
Synthesizing Virtual World Palace Scenes on
OpenStreetMap

Wanwan Li
University of South Florida

Tampa, Florida, USA
wanwan@usf.edu

Fig. 1. This figure shows the experiment results from our proposed procedural modeling approach that automatically synthesizes
virtual world palace scenes (b) from OpenStreetMap data (a). Location presented in this result is Eiffel Tower in Paris, France.

Abstract—Virtual worlds have gained significant popularity in
recent years, offering immersive experiences and vast opportu-
nities for various applications. With the rapid advancement of
computer graphics and virtual reality technologies, the demand
for realistic and immersive virtual environments has significantly
increased. One critical aspect of virtual world creation is the
procedural generation of realistic scenes. Recently, researchers
proposed some automatic virtual urban environment synthesis
approaches based on OpenStreetMap (OSM), which is a widely-
used collaborative mapping platform that provides rich and
diverse geospatial datasets. In this paper, we propose a novel
technical approach for synthesizing virtual world palace scenes
using OSM data. By applying geometry extraction, geometric
modeling, and texturing techniques, our proposed approach
is able to leverage OSM’s geometric information to generate
realistic, immersive, and highly detailed 3D palaces with different
architectural styles in the world. In the end, we test our approach
to convert modern urban scenes into world palace scenes with
different architectural styles within the same urban layout.

Keywords—Procedural Modeling, OpenStreetMap (OSM)

I. INTRODUCTION

As the advancement and increasing popularity of Virtual
Reality (VR) technologies are opening up new possibilities
for creating virtual worlds for various domains including
entertainment, education, tourism, architecture, etc., there is a
growing demand for realistic virtual world environments. Vir-
tual worlds have gained significant popularity in recent years,
offering immersive experiences and diverse environments,
and allowing users to explore and interact with computer-
generated environments that replicate real-world or fictional
settings. Creating visually appealing and realistic scenes within
virtual worlds is crucial to enhancing user immersion and

engagement. However, manually creating realistic virtual en-
vironments, such as palaces, is a nontrivial task that requires
heavy manual efforts from content designers to deliver an
accurate representation of 3D models, textures, and lighting.
Therefore, synthesizing realistic palace scenes within virtual
worlds poses a unique challenge due to the complexity and
intricacy of architectural designs.

Recently, by leveraging the rich dataset and geospatial infor-
mation available in the OpenStreetMap (OSM) dataset [1]–[6]
and combining it with advanced computer graphics techniques,
researchers have successfully proposed technical approaches
to automatically synthesize virtual urban scenes on OSM.
For example, in 2021, Li et al [7] synthesized virtual urban
scenes on OSM for Uber schedules optimization. In 2022,
Li et al. [8] synthesized virtual construction scenes on OSM,
Li et al. [9] synthesized virtual urban scenes on OSM for
conceptual architecture design in VR. In 2023, Li et al. [10]
synthesized virtual urban scenes on OSM for VR treadmill
exergaming, Li et al. [11] synthesized virtual urban scenes
on OSM for optimizing Alternating Reality Games (ARG). In
the same year, Li et al. [12] synthesized virtual urban night
scenes on OSM. The most relevant work is the approach for
synthesizing virtual Chinese palace scenes on OSM proposed
by Li et al. [13]. However, no existing work has been proposed
for synthesizing the virtual world palace scene on OSM.
Therefore, given this observation, in this paper, we present a
novel approach to automatically synthesize immersive, highly
detailed, and visually compelling virtual world palace scenes
on OSM that capture the essence of prominent and culturally
significant architectural structures found worldwide.

Fig. 2. Overview of our approach.

II. OVERVIEW

Figure 2 shows the overview of our approach. Given a
real-world location on the OSM, the Unity3D game engine
can automatically download the OSM data through Google
Map API. OSM data contains the urban environment features
such as buildings, roads, land, and water. Then, through an
open-source Unity 3D asset, GO Map [14], OSM data can be
constructed as a 3D model of the urban layout. After applying
realistic textures to this generated scene, a virtual urban scene
is procedurally generated on OSM as shown in Figure 2 (a).
Then, for each building in the urban scene, we apply a series
of procedural modeling steps to replace the original modern
buildings into world palaces with different styles. As shown in
Figure 2 (b), procedural modeling approaches are designed to
construct world palaces with five architectural styles including
Baroque, Byzantine, Gothic, Islamic, and Neoclassic. For each
style, the procedural modeling process includes adding steps
and doors, repeatedly adding window and eave for each floor,
and adding roof for the highest floor. In the end, after updating
textures for the world palaces as shown in Figure 2 (c), the
output of realistic virtual world palaces scenes is procedurally
synthesized on OSM as shown in Figure 2 (d).

III. TECHNICAL APPROACH

According to the OSM Google Map API, any modern
building geometry is an extruded geometry from a poly-
gon. Mathematically, each building bi in the building cluster
B = {b1, b2, ...}, there is bi = Pi ↑ hi where polygon
Pi = {p1,p2, ...}, building height is hi, and ↑ denotes the
extrusion operation along the y-axis. Our proposed approach
automatically generates world palaces with different architec-
tural styles according to this polygon Pi so as to replace
the original modern building bi into a palace building b′i.
Figure 3 shows the building geometry procedurally generated
with our approach for each architectural style. In this example,
according to the modern building shown in Figure 3 (a) which
is extruded from a rectangle, the input of these five synthesized
results of world palaces is a rectangle. More specifically,
the architectural styles of synthesized world palaces include
(b) Baroque, (c) Byzantine, (d) Gothic, (e) Islamic, and (f)
Neoclassic. In this section, we will introduce the mathematical
representations and our technical approach for synthesizing
procedural world palaces with these five architectural styles.

Baroque Palace. Given arbitrary polygon Pi, Baroque palace
geometry b′i can be procedurally generated using the Boolean
OR (∨) operation as shown in the equation below:

b′i = f0s (Pi)∨ ξ0d (Pi)∨ f1e (Pi)∨ χNi

f (Pi)∨ fNi+1
r (Pi) (1)

where f∗s (Pi) is the steps geometry, ξ∗d (Pi) is the door
geometry, f∗e (Pi) is the eave geometry, f∗r (Pi) is the roof
geometry, and χNi

f (Pi) is the floors geometry calculated as:

χNi

f (Pi) =

Ni∨
j=1

(
ξjw(Pi) ∨ f j+1

e (Pi)
)

where ξ∗w(Pi) is the window geometry, the total number of
floors is Ni = ⌊(hi − hd − hr)/hw⌋ and hd, hr, hw are the
heights of door, roof, and window respectively. For Baroque
palace, hd = 10, hr = 15, hw = 8. Door / window geometry
ξjd/w(Pi) is calculated as:

ξjd/w(Pi) =

|Pi|⋃
k=1

(
pk + we(ci − pk) + yj

d/w

) ↑ hd/w

where y-axis offset yj
d/w = (0, hs/hs + hd + (j − 1)hw, 0).

Parametric Extrusion. In Equation 1 and Equation III, steps
geometry f∗s (Pi), eave geometry f∗e (Pi), and roof geometry
f∗r (Pi) are represented using parametric extrusion operation.
For simplicity, we use f j∗ (Pi) to represent the parametric
extrusion with the height function h∗(t) at the jth floor where
t ∈ [0, 1]. Then, the M × |Pi| vertices of the triangle mesh
for the parametric extrusion f j∗ (Pi) are represented through
the point set calculated with the following equation:

f j∗ (Pi) =

M−1⋃
m=0

|Pi|⋃
n=1

pn + t(ci − pn) + hj
∗(t)

where t = m/(M − 1), ci is the mass center of the polygon
Pi, and hj

∗(t) = (0, h∗(t), 0)+yj
∗. In our approach, the mesh

precision M is set to 100. Height function for steps is: hs(t) =
⌊nt/ws⌋hs/n, if t < ws; Otherwise, hs(t) = hs. We set steps
count n = 3, steps width ws = 1.5 and steps height hs =
3. Height function for roof is: hr(t) = hrt/wr, if t < wr;
Otherwise, hr(t) = hr. We set roof width wr = 2.5 and roof
height hr = 15. Height function for eave is: he(t) = (1 −
⌊nt/we⌋/n)he, if t < we; Otherwise, he(t) = he. We set
n = 3, eave width we = 1, and eave height he = 3.

Fig. 3. Building Geometry. This figure shows the building geometry procedurally generated with our approach for different
styles of palaces. According to the modern building shown in (a), the input polygon of these synthesized palaces is a rectangle.
These architectural styles of synthesized palaces include (b) Baroque, (c) Byzantine, (d) Gothic, (e) Islamic, and (f) Neoclassic.

Byzantine Palace. Similar to Baroque palace geometry,
Byzantine palace geometry is also procedurally generated
using Equation 1 and Equation III. However, unlike Baroque
palace whose roof is flat, rather, Byzantine palace has spherical
roof, therefore, Byzantine palace’s height function for roof is:

hr(t) = sin
(
cos−1(t− 1)

)
hr (2)

Parameter settings for Byzantine palace are: ws = 1.5, hs = 3,
hd = 10, we = 1, he = 3, wr = 2.5, hr = 30, hw = 8.

Gothic Palace. Unlike Baroque and Byzantine palace’s roofs,
Gothic palace’s roof is neither flat nor spherical, rather, it is
sharp. Therefore, Gothic palace’s height function for roof is
hr(t) = thr. Then, Gothic palace geometry is procedurally
generated using the following equation:

b′i = f0s (Pi)∨ ξ0d (Pi)∨ f1e (Pi)∨χNi−1
f (Pi)∨ψNi

f (Pi) (3)

where the last floor geometry ψNi

f (Pi) is calculated as:

ψNi

f (Pi) = kf
(
ξNi

w (Pi) ∨ fNi+1
e (Pi) ∨ fNi+1

r (Pi)
)
∨τ0t (Pi)

where last floor scale kf = 0.7 and tower building geometry
τ0t (Pi) at corners is calculated with the following equation:

τ0t (Pi) = kt

|Pi|∨
n=1

(
ξ0d’(Q

n(Pi)) ∨ f1e’(Q
n(Pi)) ∨ f1r’(Qn(Pi))

)
where tower scale kt = 0.3, tower door height hd’ =
max(0, hi − hd − hr) + hd, tower eave / roof elevation
y1
e′/f ′ = (0, hw+hd’, 0), and Qn(Pi) is corner quad geometry

for the nth vertex in polygon Pi which is calculated as:

Qn(Pi) = {qn,pn,pn+1,pn+1 + qn − pn}

where qn = pn + λ(pn−1 − pn) and scale factor λ = 2.5we.
Parameter settings for Gothic palace are: ws = 1.5, hs = 3,
hd = 10, we = 1, he = 3, wr = 2.5, hr = 30, hw = 8.
Figure 4 shows an example of a Gothic palace procedurally
generated using our approach with the input polygon of a
pentagon. This synthesized Gothic palace consists of a main
palace building surrounded by five tower buildings generated
for five vertices of the pentagon. Our approach for synthesizing
tower buildings results in a visually captivating Gothic palace.

Fig. 4. Gothic Palace Geometry. This figure shows an example
of a Gothic palace procedurally generated using our approach
with the input polygon of a pentagon. There are five tower
building geometry generated for five vertices in the pentagon.

Islamic Palace. Similar to Gothic palace geometry that has
tower buildings, Islamic palace geometry is also procedurally
generated using Equation 3. Unlike a Gothic palace whose roof
is sharp, Islamic palace has a spherical roof. Therefore, Islamic
palace’s height function for roof is the same as the Byzantine
palace’s height function for roof as shown in Equation 2.
Parameter settings for Islamic palace are: ws = 1.5, hs = 3,
hd = 10, we = 1, he = 3, wr = 2.5, hr = 40, hw = 8.

Neoclassic Palace. We extend our procedural generation
approach to create a Neoclassic palace geometry with pillars,
building upon the previous discussion of synthesizing other
types of palaces. Unlike other palaces’ roofs, Neoclassic
palace’s roof is plane and its geometry can be procedurally
generated using the following equation:

b′i = f0s (Pi)∨ ξ0d (Pi)∨ f1e (Pi)∨ χNi−1
f (Pi)∨ ηNi

f (Pi) (4)

where the last floor geometry ηNi

f (Pi) is calculated as:

ηNi

f (Pi) = kf
(
ξNi

w (Pi) ∨ fNi+1
e (Pi)

)
∨ ζ0p (Pi)

where final scale kf = 0.7 and pillar geometry ζ0p (Pi) is:

ζ0p (Pi) =

|Pi|∨
k=1

Nk∨
n=1

ΘRphd

(
qn
k + weσp(ci − qn

k) + y0
d

)
↑ hd

where sample count Nk = ⌊ |pk+1−pk|
2Rp

⌋, the nth sample point
qn
k = pk + n (pk+1 − pk) /Nk, pk = Pi,k, circle generator

(a) Synthesized Virtual Modern Urban Scene (b) Synthesized Virtual Baroque Palace Scene

(c) Synthesized Virtual Byzantine Palace Scene (d) Synthesized Virtual Gothic Palace Scene

(e) Synthesized Virtual Islamic Palace Scene (f) Synthesized Virtual Neoclassic Palace Scene

Fig. 5. Experiment Result (Part 1). This figure shows the experiment results of synthesizing world palace scenes at the same
location with different styles. The location setting is Eiffel Tower, Paris, France. Subfigures are synthesized scenes for modern
urban (a), Baroque palaces (b), Byzantine palaces (c), Gothic palaces (d), Islamic palaces (e), and Neoclassic palaces (f).

ΘR(p) represents a circle that has a center at p with radius of
R, pillar offset σp = −0.8, relative pillar radius Rp = 0.2.
Parameter settings for Neoclassical palace are: ws = 1.5,
hs = 3, hd = 15, we = 1, he = 3, wr = 2.5, hw = 8.
For Neoclassical palaces, pillars are dominant architectural
elements inspired by classical Greek and Roman architecture.
In our proposed approach, by combining the geometry of
pillars with other parts of the palace geometry, we can generate
visually appealing and immersive palaces that showcase the
elegance and grandeur of Neoclassical design.

IV. EXPERIMENT RESULTS

We implemented our proposed approach using Unity 3D
with the 2019 version and generate these experiment results
with the hardware configurations containing Intel Core i5
CPU, 32GB DDR4 RAM, and NVIDIA GeForce GTX 1650
4GB GDDR6 Graphics Card. Figure 5 figure shows the details
of synthesized virtual world palace scenes at the same location,
specifically the Eiffel Tower in Paris, France. The figure
consists of six subfigures, each representing a synthesized
scene with a different architectural style.

Fig. 6. Experiment Results (Part 2). This figure shows the details of synthesized virtual world palace scenes. Six different
views are rendered from six cameras placed in the virtual world palace scene that is synthesized with our approach.

Figure 5 (a) showcases a synthesized modern urban scene
where all buildings are extruded from a polygon. (b) presents
a synthesized scene where there are Baroque features such as
relatively flat roofs. (c) presents a synthesized scene with a
fusion of the Byzantine styles such as the spherical roofs.
(d) illustrates a synthesized scene featuring iconic Gothic
architectural styles such as towering spires and sharp roofs.
(e) showcases a synthesized scene with Islamic architectural
elements such as spherical roofs, domes, and minarets. (f)
depicts a synthesized scene with Neoclassical elements of
pillars that are inspired by Greek and Roman architecture.

Figure 6 displays the details of synthesized virtual
world palace scenes that incorporate a mixture of different
architectural styles in the same location. Six subfigures
show six different views to focus on palaces with different
architectural styles. Palaces are synthesized with a random
generator that has different probabilities to generate different
styles among which Modern, Baroque, Byzantine, Neoclassic
are 15% respectively, Gothic and Islamic are 20% respectively.

V. CONCLUSION

In this paper, we propose a novel technical approach to
synthesize the virtual world palace scenes on OpenStreetMap.
The experiment results present a unique visual representation
of the palace scenes synthesized using different architectural
styles across the world at the same location and demonstrates
a visual effect of incorporating the diverse range of archi-
tectural styles into the same synthesized palace scene. Those
experiment results validate the correctness and efficacy of our
approach. Future work can synthesize palace scenes with more
unique features to incorporate cultural elements from minority
so as to enhance the inclusivity and diversity of virtual palace
scenes by integrating underrepresented cultural elements.

REFERENCES

[1] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.

[2] D. Luxen and C. Vetter, “Real-time routing with openstreetmap data,”
in Proceedings of the 19th ACM SIGSPATIAL international conference
on advances in geographic information systems, 2011, pp. 513–516.

[3] J. J. Arsanjani, C. Barron, M. Bakillah, and M. Helbich, “Assessing the
quality of openstreetmap contributors together with their contributions,”
in Proceedings of the AGILE, 2013, pp. 14–17.

[4] P. Neis and D. Zielstra, “Recent developments and future trends in vol-
unteered geographic information research: The case of openstreetmap,”
Future internet, vol. 6, no. 1, pp. 76–106, 2014.

[5] P. Mooney, M. Minghini et al., “A review of openstreetmap data,”
Mapping and the citizen sensor, pp. 37–59, 2017.

[6] A. Pluta and O. Lünsdorf, “esy-osmfilter–a python library to efficiently
extract openstreetmap data,” Journal of Open Research Software, vol. 8,
no. 1, 2020.

[7] W. Li, “Make uber faster: Automatic optimization of uber schedule using
openstreetmap data,” in Proceedings of the 2021 EURASIAGRAPHICS,
2021, pp. 19–26.

[8] ——, “Simulating virtual construction scenes on openstreetmap,” in Pro-
ceedings of the 6th International Conference on Virtual and Augmented
Reality Simulations, 2022, pp. 14–20.

[9] ——, “Pm4vr: A scriptable parametric modeling interface for conceptual
architecture design in vr,” in The 18th ACM SIGGRAPH International
Conference on Virtual-Reality Continuum and its Applications in Indus-
try, 2022, pp. 1–8.

[10] ——, “Terrain synthesis for treadmill exergaming in virtual reality,”
in 2023 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW), 2023, pp. 263–269.

[11] W. Li, C. Li, M. Kim, H. Huang, and L.-F. Yu, “Location-aware
adaptation of augmented reality narratives,” in Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems, 2023, pp.
1–12.

[12] W. Li, “Synthesizing virtual night scene on openstreetmap,” in 2023
International Conference on Communications, Computing and Artificial
Intelligence (CCCAI)), 2023, pp. 1–6.

[13] ——, “Synthesizing virtual chinese palace scene on openstreetmap,” in
2023 2nd International Conference on Image Processing and Media
Computing (ICIPMC), 2023, pp. 1–6.

[14] A. Grant, “Go map - unity 3d asset, 3d map for ar gaming,”
https://gomap-asset.com/, 2017.

