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Figure 1: Given a user-specified urban layout with a navigation path (a) and given a user-specified treadmill workout profile (b),
we automatically generate the terrain (c) for treadmill exertion games in Virtual Reality (VR) such that the haptic feedback from
the treadmill device matches with the visual content in the VR headset. After synchronizing the VR exergame with the treadmill
device, the player can have an immersive virtual exercise experience (d).

ABSTRACT

In order to connect haptic feedback with visual content in tread-
mill VR exergames for getting more immersive user experiences,
we present a novel optimization-based approach to automatically
generate terrains for treadmill exergames that can match well with
the user-specified treadmill workout profile. In order to validate the
effectiveness of our approach, a series of numerical experiments are
conducted to investigate the visual effects of the generated terrain,
the virtual walking experience of the treadmill exergame, and the
comparison between the manual terrain creation approach and the
terrain synthesis approach.
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1 INTRODUCTION

As more people realize the importance of living healthy lives, exer-
tion games (i.e. exergames), which is a special genre of video games,
have become a trend in modern video games. In recent years, VR
technologies that match virtuality with reality [9,20] through immer-
sive haptic devices [27, 28, 33] are widely studied and claimed by
researchers that exergaming provides positive results by enhancing
social well-being, reducing loneliness, and increasing social con-
nection [21]. Due to the potential of exergaming to improve mental
and physical health is promising, the game industry has a strong
incentive to explore advanced computer graphics technologies that
are able to create an immersive, realistic virtual experience that con-
siders players’ physical activity and exercise health. Especially, for
better visual effects, many advanced interactive computer graphics
technologies such as realistic rendering, geometric modeling, and
terrain procedural authoring, have been widely studied to develop
those immersive exertion games in virtual reality.

Mere visual realism without haptic feedback is not immersive
for players living in a physical world. On one hand, in order to get
better body training effects with more engaging user experiences by
filling such a gap between the virtual synthesized world and the real

physical world, growing interests from researchers are switching
toward those novel technologies that connect haptic feedback with
virtual content in VR headsets. On the other hand, the traditional
approach which is based on manually creating or modifying the
virtual content to match the haptic feedback through trials and errors
can be tedious and time-consuming work for exergame designers.

Since synthesizing and editing procedural terrain with advanced
technologies has been a popular research topic for decades, different
terrain editing and modeling approaches, such as GPU-based [7, 26],
patch example-based [36], ATGS-based [31], sketch-based [6],
physics-based [29], volumetric-based [5], layered depth normal
images-based [11], voxel cubes-based [25], global-to-local control-
based [34], etc., have been studied systematically. Recent research
works also show growing interest in applying inverse procedural
modeling on terrains synthesis and editing by employing data-driven
approaches such as the Conditional GANs-based [16], multi-theme-
based [35], Points-of-Interests-based [30], etc. Procedural terrain
synthesis technologies have also been employed in game level de-
sign such as building virtual worlds [32], landscape automata [3],
personalizing exercise therapy [24], etc. As another research work
closely related to ours, Li et al. [22] propose a novel approach to
automatically generate a path on arbitrary terrain that can deliver
users with desired exertion effects. However, their approach suffers
failures to optimize a path when the terrain input is not qualified.
Also, there are hardware constraints behind their approach such
as a custom-built VR bike programmed with Adriano. Therefore,
for overcoming those limitations, we propose a novel optimization
approach that synthesizes terrain in VR according to arbitrary hard-
ware settings (i.e., workout profile) for a general-purposed treadmill
that users can buy everywhere. Our approach can help the exergame
designers automatically generate virtual terrains that are compatible
with user-specified treadmill workout profiles without demanding
manual effort. Major contributions of our proposed work include:

• We preprocess a terrain heightmap dataset and use this dataset
to train a RaLSGAN (a variation of GAN, please refer to
Section 3 for more details), for synthesizing high-resolution
photorealistic terrain heightmaps in real-time.

• We synthesize realistic virtual environments by combining
the terrain generated from the RaLSGAN with realistic urban
layouts extracted from OpenStreetMap data.



Figure 2: Overview of our approach.

• We propose a novel technical approach for optimizing the
synthesized terrain with target inclines (elevation angles) as
specified by the treadmill workout profile, resulting in immer-
sive user experiences for VR exergames.

• We conducted a series of numerical experimental and user
studies to show that our approach can deliver the desired visual
effects with less manual effort and higher accuracy to enhance
the VR treadmill exergaming experience.

2 OVERVIEW

In order to generate realistic terrain that can deliver users with their
expected exercise training effects compatible with their visual effects
during their gaming experiences in VR display, we propose a novel
technical approach includes three main steps: (1) Training the RaLS-
GAN for efficient terrain inverse procedural modeling controlled
by latent vectors. (2) We optimize the latent vector until the terrain
output from the RaLSGAN matches well with the user-specified
treadmill workout profile. (3) Procedurally embeds the given urban
layout into the synthesized terrain to result in an immersive virtual
environment. Figure 2 shows the overview of our approach. (a)
Given the treadmill workout profile that specifies the speed and
inclines for each time interval, we calculate the path elevation as
shown in (b). Then we optimize the high-resolution realistic terrain
(c) synthesized from a RaLSGAN trained with real-world terrain
heightmap data as shown in (e). During the terrain optimization
process as shown in (c), we evaluate the total cost function which
considers the path elevation, water area, and smoothness surround-
ing the path. If the total cost is small enough, we output the final
terrain as shown in (d); Otherwise, we update latent vector Z and
synthesize terrain through generator G again as shown in (e).

3 TECHNICAL APPROACH

3.1 Navigation Path

Figure 3: Profile.

Workout Profile. Our approach is flexible
and based on arbitrary interval workout
devices such as True Fitness Treadmill de-
vices for TRUE CS Series [1]. This type
of treadmill is integrated with a powerful
deck and motor combination that makes it
easy to adjust speed and incline with cus-
tom workout profile settings on the touch
screens. Our approach doesn’t require
specific functions to control programmed
custom-built treadmill devices as it can be
achieved by setting up the treadmill with a workout profile and start-
ing the treadmill program with our VR exergame program at the
same. Therefore, the only task that our approach needs to handle
is to align the user’s navigation path with an arbitrarily specified

workout profile. As shown in Figure 3, a standard exercise plan
for treadmill workout [4] is a table with three columns: (1) Time
interval, (2) Incline, and (3) Speed. A treadmill workout plan is
appended with several time intervals for different training stages,
which are corresponding to the rows of the table. For example, the
first row can be a starting stage with about 1 min duration, a low
average speed (3 MPH), and a high incline (15%). Incline specifies
the angle of the treadmill. Mathematically, assume there are N differ-
ent workout intervals corresponding to the N rows of the table. Let
∆ti, θi, and vi denotes the duration, incline and speed for ith interval
respectively, where i = 1,2, ...,N. Let ti denotes the accumulative
time for duration ∆ti where t0 = 0 and ti = ti−1 +∆ti, then the target
elevation of the players’ navigation path is calculated as:

h(t) =
N

∑
i=1

∫ t

0
vi(t)sinθi(t)dt, (1)

where vi(t) = vi when ti ≤ t < ti+1, otherwise is 0. Similarly, θi(t) =
θi when ti ≤ t < ti+1 , otherwise is 0. Noted that this representation
is similar to the B-Spline Curve defined by construction by means of
the Cox–de Boor recursion formula [12] to represent discrete values
as a continuous function with time t.

Figure 5: Urban Layout.

Urban Layout. After user
specifies a place in the real
world, our approach auto-
matically downloads real-
istic urban street layouts
from the OpenStreetMap
(OSM) database [23] using
OSM API. As shown in
Figure 5, in this case, the user chooses a region near Seattle, Wash-
ington, USA. Then, by using the Floyd-Warshall algorithm [13],
the navigation graph is constructed according to all pairs’ shortest
paths (as specified as yellow curves). Then, by specifying the start
location as the origin (green pin), and the end location as the desti-
nation (red pin), the shortest path connecting these two places on
the map will be automatically calculated (blue curve). Without loss
of generality, the user can specify an arbitrary urban layout and an
arbitrary path R on that layout using the approach mentioned above.
Noted that users-specified path curve R is r(s) = (x(s),z(s)) on a
2D texture domain on XZ-plane, where s is the displacement along
R, s ∈ [0, |R|] and |R| is the total length of R. We will augmented the
2D path R with elevation h(t) calculated through Equation 1. Then
2D curve R on the xz-plane can be mapped to the 3D path P on
the surface of the 3D terrain (assume this terrain exists) using path
elevation function h(t). Now it is important to reveal the relation
between time t in h(t) and the spacial displacement s in r(s). As the
displacement s along XZ-plane is projected from the 3D path onto
the XZ-plane, therefore, speed vi(t) is projected through the cosine



(a) Missing elevation cost. (b) Missing smoothness cost. (c) Missing water cost.

Figure 4: Missing costs. This figure shows the possible poor solutions that are caused by missing costs. Subfigure (a), (b), and (c) shows the
result terrain for missing elevation cost, smoothness cost, and water cost respectively.

of incline angle θi(t), relation between time t and displacement s is:

s(t) =
N

∑
i=1

∫ t

0
vi(t)cosθi(t)dt (2)

Therefore, combine path elevation h(t) from Equation 1 on y axis
and path curve function r(s(t)) = (x(s(t)),z(s(t))) on x and z axis,
we have the parameterization of the expected 3D navigation path
curve P as p(t) = (x(s(t)),h(t),z(s(t))).

3.2 Terrain Synthesis

High-Resolution Heightmap. In this work, we use a data-driven
approach to synthesize high-resolution terrain heightmaps in real-
time using a variation of the Standard Generative Adversarial Net-
work (SGAN) called Relativistic Average Least Square Generative
Adversarial Network (RaLSGAN). As proposed by Jolicoeur et
al. [17], RaLSGAN extends the SGAN (SGAN was first proposed
by Goodfellow [15] in 2014) with a relativistic discriminator. The
main difference between SGANs and RGANs has resided in their
goals: SGANs’ are hoping to make both fake data and real data look
real in the end. Instead, RGANs make their goal even harder to
achieve, that is hoping to make fake data look real but real data look
fake at the end, which means fake data look ”more real” than real
data. So, given these assumptions, in RaLSGAN, the Mean Square
Error (MSE) loss functions for discriminator D and generator G are:

LD =
∣∣D(G(z))−

(
D(x)−1

)∣∣2 + ∣∣D(x)−
(
D(G(z))+1

)∣∣2 (3)

LG =
∣∣D(G(z))−

(
D(x)+1

)∣∣2 + ∣∣D(x)−
(
D(G(z))−1

)∣∣2 (4)

For more details and explanations of the RaLSGAN implementa-
tions and training process proposed in our approach, please refer to
the Supplementary Material (Section 7).

Heightmap Image Processing. Synthesized terrain with a coarse
surface is not suitable for placing the urban layout from the Open-
StreetMap due to the fact that the areas beneath the buildings or the
roads need to be flat or smooth. Therefore, we proposed an efficient
approach to processing the heightmap synthesized from the RaLS-
GAN so as to guarantee the areas beneath the buildings and roads
are flattened on the heightmap. As the heightmap is a gray image,
we apply an image processing method to flatten the building areas
and road areas on the heightmap. Figure 6 shows our heightmap
processing approach: given an arbitrary heightmap synthesized with
a RaLSGAN (a), we first flatten the building areas by looping for
each building, consider the bounding area of each building as a
polygon, calculate the center color of the heightmap in that polygon
and fill that polygon shape onto the heightmap image using that
center color. After this processing step, we got the heightmap with
the building areas flattened (b). The next step is to smooth the road
area on the heightmap image. In this step, we loop for each road
line in the road geometry from OpenStreetMap data and draw a line
onto the heightmap image with the linear color transition using two

(a) Given heightmap. (b) Add building area. (c) Add road area.

Figure 6: Heightmap image processing. (a) shows the terrain
heightmap synthesized with a RaLSGAN. (b) shows the heightmap
with the building areas flattened. (c) shows the heightmap with the
building and road areas flattened.

different colors that are corresponding to the colors of the road’s
two endpoints on the heightmap image. In this way, the road will
be smoothed according to the elevation of the two endpoints of that
road. (c) shows the heightmap with both the building and road areas
flattened. After these heightmap image processing steps, the terrain
with the final heightmap is suitable for placing the buildings and the
roads in the urban layout from the OpenStreetMap.

3.3 Cost Functions
Total Cost. In our approach, a terrain’s heightmap is generated
from a RaLSGAN using the random input latent vector z, the ter-
rain heightmap output is H(u,v) = G(z), where (u,v) is the texture
coordinates of the heightmap image. Then there are three terms to
evaluate a generated terrain H including Elevation Cost Ce measures
the difference between the elevation of the path along the generated
terrain H(u(t),v(t)) and the target path elevation h(t) calculated
from user’s workout profile; Smoothness Cost Cs measures how
bumpy is the nearby region on generated terrain where the path is
passing through; Water Cost Cw measures whether there is any mis-
match between the generated terrain and the specified urban layout
where there are water areas. Total cost Ctotal(H) is:

Ctotal(H) = weCe(H)+wsCs(H)+wwCw(H), (5)

where the we, ws, and ww represent the respective blending weights
of the elevation cost, smoothness cost, and water cost respectively.
Empirically, we set we = 0.4, ws = 0.3, and ww = 0.3.

Elevation Cost. In order to generate a terrain that can match the
user’s physical experience in real life with the visual experience in
the virtual world, the key issue is to match the elevation angle of the
virtual path on the generated terrain and the incline angles of the
treadmill device where the user is running. From Equation 1 we can
calculate the path elevation from a pre-set workout profile, therefore,
we need to measure the difference between the expected path eleva-
tion function h(t) and the path elevation function calculated from
the generated terrain’s heightmap H(u(t),v(t)), then minimize that
difference as path elevation error Eh(H). Assume the total duration



(a) The 1st iteration. (b) The 100th iteration. (c) The 200th iteration.

(d) The 300st iteration. (e) The 400th iteration. (f) The 500th iteration (Result).

Figure 7: Optimization process. The blue curve is the navigation path lying on the synthesized terrain while the orange curve is the target
navigation path calculated from the treadmill workout profile. (a) The navigation path is initialized with a terrain randomly generated by
RaLSGAN. Throughout the iterations, the latent vector is randomly updated. Figure (b-f) shows the intermediate results generated through the
optimization process. Figure (f) shows the result of the final synthesized terrain that has the blue path matched with the orange path.

of the treadmill exercise is tN as defined in the exercise plan table,
then the path elevation error Ee(t) is:

Ee(H) =
∫ tN

0
|H(u(t),v(t))−h(t)|dt, (6)

where u(t) = x(s(t)) and v(t) = z(s(t)) according to the 2D curve
function r(s(t))= (x(s(t)),z(s(t))) as explained in Equation 2. Then
the elevation cost function Ce(H) is a Gaussian-like function to
smooth the path elevation error Ee(H) and Ce(H) is:

Ce(H) = 1− exp(−
(

Ee(H)

σe

)2
), (7)

where we empirically set σe = 0.25. As shown in Figure 4(a),
missing elevation cost might generate a terrain like ”plane” and
the target path (orange curve) will mismatch with the path on the
generated terrain (blue curve).

Smoothness Cost. In order to avoid the rapid changes that happen
to the synthesized terrain in the nearby area where a path is passing
through, we introduced the Laplace operators (∇2) to calculate the
sharpness of the heightmap H near a path. By minimizing the inte-
gration of the divergence (∇·) of the gradient (∇) of the heightmap
within the nearby region where path r(s(t)) = (x(s(t)),z(s(t))) en-
ters, we need the heightmap in that region as smooth as possible.
The smoothness error Es is represented as:

Es(H) =
∫ tN

0
∇

2H(u(t),v(t))dt (8)

where u(t) = x(s(t)) and v(t) = z(s(t)). The Laplace operator (∇2)
for two dimensions coordinates (u,v) is given by the sum of the
second partial derivatives for both u and v. which is defined as:

∇
2H(u,v) =

∂ 2H(u,v)
∂u2 +

∂ 2H(u,v)
∂v2 (9)

where (u,v) are the 2D coordinate of the heightmap’s texture space.
By minimizing this term, we can make the heightmap’s local regions

where the path is passing nearby as smooth as possible. Similarly,
the smoothness cost function Cs(H) is defined as:

Cs(H) = 1− exp(−
(

Es(H)

σs

)2
), (10)

where we empirically set σs = 0.25. As shown in Figure 4(b),
missing smoothness cost results in a terrain has a sharp ”edge” near
the path (blue curve). This can result in a trivial solution that only
elevates the surrounding area of the terrain where the path is passing
through to match target path but result in an unrealistic result.

Water Cost. In order to avoid the generated terrain not matching
with the user-specified urban layout where there is a water area, this
term is used to ”tune” the terrain to be flat where it is supposed to
be in the water. Therefore, we penalize the elevation of the terrain
where that area belongs to the water region W evaluated through the
water error function Ew(H) which is defined as:

Ew(H) =
1
|W |

x

(u,v)∈W

H(u,v)dudv (11)

Then the water cost function Cw(H) is represented as:

Cw(H) = 1− exp(−
(

1−Ew(H)

σw

)2
), (12)

where we empirically set σw = 0.25. As shown in Figure 4(c),
missing water cost can generate a terrain that has ”mountain” above
the sea region (blue texture)) which is unrealistic.

3.4 Terrain Optimization
Figure 7 shows the terrain optimization process proposed by our ap-
proach. Given the workout profile as the exercise table, we calculate
the path elevation as specified in Equation 1. We use a pre-trained
RaLSGAN to synthesize a realistic terrain heightmap. During the
terrain optimization process, we evaluate the total cost function ac-
cording to the synthesized terrain, if the total cost is small enough,
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(a) User-specified urban layout and path. (b) Terrains synthesized with our approach. (c) Urban scene on the synthesized terrains.

Figure 8: Numerical experimental results. This figure shows the synthesized terrains with different settings. Different rows show different
locations including Seattle, Marina Bay Sands, and Bari. Different columns are: (a) input of urban layouts, paths, and workout profiles; (b)
terrains synthesized with our approach given the input from (a); (c) virtual urban environments generated on the synthesized terrains in (b).

we output the result as the final terrain; Otherwise, we update the
latent vector z into z′ and synthesize the terrain through the genera-
tor G again. We formulate the optimization problem as a searching
problem by employing the Markov chain Monte Carlo method [14]
to search for a solution that minimizes the total cost function. Given
any randomly chosen latent vector z in the current stage, the pro-
posed new latent vector z′ is randomly searched in the solution space
with three types of move:

• Increase a Random Value: a random value in z is increased by
∆z to create a proposed latent vector z′.

• Decrease a Random Value: a random value in z is decreased
by ∆z to create a proposed latent vector z′.

• Swap Two Random Values: two random values in z are swapped
with each other to create a proposed latent vector z′.

Empirically, we set random moving step ∆z ∼ N(µ = 0,σ2 = 0.25).
For a proposed update of the latent vector z′, the new heightmap
synthesized from the generator G is H ′ = G(z′). According to the
formulation of the method by Kirkpatrick et al. [18], the acceptance
probability function Pr(H ′|H) is defined as:

Pr(H ′|H) = min(1,
f (H ′)

f (H)
), (13)

where f (H) is a Boltzmann-like objective function related to a
Metropolis-Hastings state searching step [10]:

f (H) = exp(−1
t

Ctotal(H)) (14)

where t is the temperature parameter of simulated annealing, which
decreases gradually throughout the optimization. As the temperature
t decreases over iterations, the optimizer becomes less aggressive
and more greedy. By the end, the temperature drops to a low value
near zero, and the optimizer tends to accept better solutions only.
We empirically use temperature t = 1.0 at the beginning of the
optimization and decrease it by 0.2 every 100 iterations until it
reaches zero or terminated if the total cost change is smaller than
3% over the past 50 iterations.

4 NUMERICAL EXPERIMENTS

We have tested our proposed approach by synthesizing terrains with
different settings. As shown in Figure 8, terrains are synthesized
in different places with different workout profiles. The first row
shows the terrain synthesized in Seattle, USA with a workout profile
where users are running at a constant speed of 3 MPH. The inclines
are increasing as time collapse, in the last two minutes, the inclines
decrease to 0 for a recovery period. As we can see from the synthe-
sized terrain, the terrain errors (Elevation error is 0.05, Smooth error
is 0.07, Water error is 0.03) are relatively low and the overall trend
of the elevation of the path matches well with the workout profile.
The second row shows the terrain synthesized in Marina Bay Sands,
Singapore, with a workout profile that starts will a faster speed while
keeping a low incline at the beginning. As time goes by, the incline
increases while the speed is getting lower in the end. The target path
elevation mimics a quadratic equation curve like y = x2. As we can
see, our proposed approach is still quite good at solving this type of
workout profile as the terrain errors are quite low (Elevation error is



0.07, Smooth error is 0.04, and Water error is 0.05). The third row in
Figure 8 shows the terrain synthesized in Bari, Italy with a workout
profile that starts will a slower speed while keeping a higher incline.
As time goes by, the incline decreases while the speed is getting
faster. This target path elevation is aimed at mimicking a square-root
equation curve like y =

√
x. As shown in the result, our proposed

approach is robust enough to solve this type of workout profile as
the elevation error is low enough to be acceptable (Elevation error
is 0.08, Smooth error is 0.06, and Water error is 0.02). As we can
see, the synthesized terrain successfully reflects such a pattern that
the terrain raised up immediately at the beginning and after then
it elevates higher slowly. Besides, the water area almost exactly
matches the urban layout input. In general, our approach solved
these proposed numerical problems successfully with acceptable
terrain errors. So, users are able to experience an immersive VR ex-
ertion game while virtually navigating this scene, as the treadmill’s
haptic feedback matches their visual effects in virtual scene.

5 USER STUDY EXPERIMENTS

In order to address two questions: (1) whether our workout profile-
driven terrain synthesis approach significantly improves the ex-
ergame terrain design efficiency and (2) whether the match between
visual feedback in VR display and the haptic feedback from treadmill
significantly improves the user’s workout experience, we have con-
ducted two users studies to answer these two questions respectively.
User Study 1: Terrain Manual Design. We compare our approach
with a manual approach for treadmill workout profile-driven terrain
design; User Study 2: Treadmill Walking in VR. We compare the
user’s workout experiences in the scene on a flat terrain that has no
elevation changes with the workout experiences in a scene generated
on our synthesized terrain that has elevation changes.

Experiment Process. For the experiment process of User Study
1, please refer to Supplementary Material (Section 1). For User
Study 2, we recruited 10 undergraduate students for this treadmill
VR walking experiment. With the help of 5 students as the user
study organizers, 10 student participants are running through two
VR navigation programs on the treadmill. One VR program is
walking within an urban environment on a flat terrain called City on
Ground. Another one is walking within an urban environment on
the terrain synthesized with our approach called City on Hill. These
two virtual environments are shown in the first row of Figure 8 (a)
and (c) respectively. Note that the order to play these two programs
is randomly decided. During the study, each participant is asked
to put two hands on the two handles on the treadmill to keep the
process safe. The speed of the treadmill is set to 0.3 MPH which
is slow enough to ensure safety while wearing a VR headset. After
the study, we ask questions about users’ exergaming experiences
with these two sessions of VR programs and rated them with Likert
scores for level of enjoyment.

Figure 9: Treadmill walking.

As shown in Figure 9, dur-
ing User Study 2, we tested
the treadmill virtual walk-
ing experience on an Occu-
lus Quest 2 VR headset. We
build a VR navigation pro-
gram that can be automati-
cally synchronized with the
treadmill program by mak-
ing both programs set up
with the same exercise pro-
file. As shown in the Supplementary Video, a manual presetting
of the workout profile can automatically adjust the inclines of the
True treadmill device after this workout profile is started. At the
same time, through a VR program that is implemented by us us-
ing Unity3D, a virtual-navigation script automatically pushes the
player’s VR camera to move forward, left, right, or up (at the same

(a) Score for City on Ground. (b) Score for City on Hill.

Figure 10: Perception score of Study 2 (Likert scale 1 to 7).

speed as the treadmill device) in the virtual scene, by setting up
this VR program with the same workout profile for the treadmill
presetting. During the study, one organizer starts the VR program
at the same time as another organizer finished setting up the tread-
mill workout plan. Therefore, as the treadmill program and the VR
program are started at the same time, the motion of the treadmill
will be automatically synchronized with the virtual navigation. For
example, at any time when the treadmill’s incline goes up, players
go up simultaneously in the VR scene. For more details, please refer
to Supplementary Material (Section 2).

6 RESULTS AND DISCUSSIONS

For experimental results of User Study 1, please refer to Supple-
mentary Material (Section 1, 4, 6). For User Study 2, according
to the standard questionnaire testing users’ perceived enjoyment
level [2, 19], every question is asking about one perceptive adjec-
tive (in our study, they are enjoyable, immersive, fun, realistic, and
relaxing) to rate their VR walking experience. (E.g., How much
extent do you agree this is fun?) According to these two VR pro-
gram settings for City on Hill and for City on Ground, the Likert
perception score between 1 and 7 evaluated by the users are shown
in Figure 10. According to the statics, there is a higher perception
score for the City on Hill than the City on Ground according to the
AVG scores for the City on Ground game which are (4.7, 5.1, 5.8,
3.6, 5.2) and those for City on Hill which are (5.2, 6.4, 5.9, 4, 5.9).
Furthermore, we applied single factor ANOVA tests [8] for users’
Likert perception scores for these questions. Using α = 0.05 (95%
confidence interval), we obtain the ANOVA test results showing
that among these two groups, p = 0.0343 < 0.05. Therefore, with
a 95% confidence level, we claim that, due to the consideration of
the inclines matches afforded by our terrain synthesis approach, VR
walking experience in City on Hill is much more enjoyable, immer-
sive, fun, realistic, and relaxing than VR walking experience in City
on Ground. For users’ general feedback about VR walking, please
refer to Supplementary Material (Section 5).

7 CONCLUSION

In this paper, we propose a novel optimization approach to syn-
thesize terrains for treadmill exergaming in virtual reality. Unlike
other existing approaches that adjust gym device’s haptic feedback
according to the elevation angles of virtual paths on a fixed terrain,
our approach takes the treadmill workout profile as the fixed input,
then, the elevation angles of virtual paths are adjusted during a ter-
rain optimization process so as to match the fixed target workout
profile. Furthermore, we conduct two user studies that are aiming at
claiming that first, our approach can efficiently improve the treadmill
exergame design process; and second, the compatibility between
virtual contents and haptic feedback improves the player’s treadmill
VR exergaming experience. However, for safety considerations,
our experiment can only show that the user’s low-speed walking
experience on treadmill in improved by our approach. Whether our
approach is suitable for high-speed intensive treadmill VR exercise,



it still needs more experiments to support. In future work, other ad-
vanced technologies for synthesizing terrains connecting with gym
activities need to be explored. For example, generating a terrain with
rivers to simulate the rowing machine that mimics the boating activi-
ties. Or simulating the virtual climbing experience while introducing
the arm workouts experience in the gym. We believe our work can
inspire more research work on devising computational approaches
to extend gym activities with immersive VR experiences.
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