
PM4Car: A Scriptable Parametric Modeling Interface for
Conceptual Car Design Using PM4VR

Wanwan Li
Department of Computer Science

University of Tulsa
Tulsa, Oklahoma, USA
wanwan-li@utulsa.edu

Fig. 1. Teaser. This teaser shows a running example of PM4Car, a scriptable parametric modeling interface designed for
conceptual car design using PM4VR. Conceptual car designer write a Java♭ script (left figure) and run it on PM4Car, the
corresponding 3D conceptual car model is generated in real-time (middle figure). After connecting PM4Car with Oculus Quest
2 VR headset via SteamVR plugin, designer can tune parameters using VR controllers in virtual environment (right figure).

Abstract—This paper introduces PM4Car, a novel scriptable
parametric modeling interface tailored for conceptual car de-
sign, leveraging the power of PM4VR (Parametric Modeling
for Virtual Reality). The integration of parametric modeling
techniques with VR environments offers a unique platform for
conceptual car designers to explore parametric design concepts.
PM4Car aims to enhance the efficiency and creativity of the
conceptual car design process by providing a easy-to-use, flexible
and intuitive interface for designers to script and manipulate
parametric models in an immersive virtual environment.

Keywords—Parametric Modeling, Car Design, Virtual Reality

I. INTRODUCTION

The conceptual car design industry is undergoing a trans-
formative shift with the advent of parametric modeling [1] and
virtual reality technologies [2]. Parametric Modeling (PM) [3]
is a innovative approach in Computer-Aided Design (CAD) [4]
that revolutionizes the way objects are created and manipu-
lated. Unlike traditional modeling techniques, parametric mod-
eling establishes relationships between geometric elements

and defines their properties through parameters [5]. These
parameters serve as dynamic variables [6], allowing designers
to easily modify the shape, size, and other characteristics of
a model by adjusting the associated parameters [7]. This not
only enhances efficiency and flexibility in the design process
but also facilitates the exploration of design iterations [8].

Virtual Reality (VR) [9] is a transformative technology that
immerses users in virtual environments, creating a sense of
presence and interaction beyond the physical world’s confines.
By employing VR headsets and controllers [10], users are
transported to a simulated reality where they can engage
with three-dimensional spaces and objects [11], making VR a
powerful tool for applications ranging from edutainment [12]–
[14] to training [15]–[19], exercising [20]–[23], and design-
ing [24]–[26]. VR technology has rapidly evolved, providing
a new dimension for human-computer interaction and fostering
innovative solutions across industries.

With the combination of PM and VR, Parametric Modeling
for Virtual Reality (PM4VR) proposed by Li et al. [27] revo-



Fig. 2. Overview of our approach.

lutionizes the traditional way of parametric modeling by im-
mersing designers in virtual environments through a scriptable
interactive user interface. PM4VR enables designers to create
and visualize parametric design iterations in virtual space,
fostering innovation and accelerating the design process. How-
ever, there is no existing research work that has systemati-
cally explored a scriptable parametric modeling interface for
conceptual car design. Therefore, given this observation, we
propose PM4Car, a novel scripting-based parametric modeling
interface integrated with PM4VR, to empower designers in the
conceptualization phase of parametric car design.

Fig. 1 showcases our proposed interactive interface of
PM4Car, a scriptable parametric modeling interface for con-
ceptual car design using PM4VR. In this demo, a conceptual
car designer writes a Java♭ script as shown in the left figure.
Upon executing this design script within PM4Car, the middle
figure displays a real-time generation of a 3D car model. As
shown in the right figure, the integration of PM4Car with
Oculus Quest 2 VR headset, facilitated by SteamVR plugin,
opens up a new dimension of interactive conceptual car design
interface that allows designer fine-tuning parameters using VR
controllers, fostering an immersive designing experience.

II. OVERVIEW

Fig. 2 shows the overview of our approach. As shown in
Fig. 2 (a), we develop a novel plugin for Unity3D Editor,
called NURBS Editor, that supports four NURBS geometry
operations including: (1) Create NURBS Surface (Ctrl+G), (2)
Update NURBS Surface (Ctrl+U), (3) Load NURBS Surface
(Ctrl+L) and (4) Write NURBS Surface (Ctrl+W). After
pressing ”Ctrl+G” key, a default NURBS surface (a square
quad with 4x4 control points) is generated in the scene as

Fig. 3. Parametric Functions (Part I).

shown in Fig. 2 (b). The NURBS Surface can be updated via
dragging the control points’ positions (or scaling the control
points’s radius to adjust the weights) followed by pressing
”Ctrl+U” key as shown in Fig. 2 (c). After a NURBS Surface
is well-designed, for example in Fig. 2 (d), a NURBS Surface
named ”Hood” is written into a file called ”Hood.NURBS” by
pressing ”Ctrl+W” key; Or, loaded into the scene by pressing
”Ctrl+L” key. These operations are implemented by us in the
C# scripts of ”NURBSGeometry.cs” and ”NURBSEditor.cs”.

Fig. 2 (e) shows a Java♭ script sample for parametric
car modeling using PM4Car. For more details about Java♭

parametric language programming, please refer to the paper for
PM4VR proposed by Li et al. [27]. The parametric function
implemented for this example is shown in Fig. 2 (f). After
sending this Java♭ script into the PM4VR modeling interface
as shown in Fig. 2 (g), the conceptual car is synthesized by
invoking three parts of the Java♭ scripts including (1) Adding



N
U

R
B

S
Su

rf
ac

e
Pa

ra
m

et
er

:
R

=
0
.0

Pa
ra

m
et

er
:
R

=
0
.5

(1) Parametric Function: func(u, v) = f1(u, v) (2) Parametric Function: func(u, v) = f2(u, v) (3) Parametric Function: func(u, v) = f3(u, v)

Fig. 4. Different Parametric Configurations. This figure shows parametric conceptual car models designed with PM4Car using
different parametric configurations such as NURBS surface designs, parametric functions and parameter values.

NURBS surfaces of ”Hood” and ”Trunk” which are defined by
parametric function ”func(u,v) f”; (2) Adding NURBS surfaces
of ”Door”, ”Bumper”, and ”Window” which are defined by
parametric function ”func(u,v) g = 0”; and (3) Adding prefabs
of ”Seat”, ”Wheels” and ”Lights” which are hand-made 3D
models designed in Unity3D Editor as shown in Fig. 2 (h). In
the end, a parametric 3D conceptual car model is automatically
generated in real-time as shown in Fig. 2 (i).

III. TECHNICAL APPROACH

To facilitate NURBS (Non-Uniform Rational B-Splines)
geometry operations within the Unity3D Editor using PM4Car,
we devise a plugin comprising two essential C# scripts:
”NURBSEditor.cs.” and ”NURBSGeometry.cs”. The former
script, ”NURBSEditor.cs,” is placed in the ”Assets/Editor”
directory to ensure its integration into the Unity3D Editor’s
dropdown menu, complemented by hotkey support for con-
venient accessibility. This script serves as the interface for
users to engage with NURBS functionality efficiently. On the
other hand, the ”NURBSGeometry.cs” script is designed to be
attached as a MonoBehaviour component to a GameObject
within the scene. This enables the application of NURBS

geometry operations directly to specific game objects, thereby
extending the versatility of the plugin for parametric modeling
within the Unity3D Editor environment.

NURBS Editor. The plugin incorporates key NURBS geome-
try operations to streamline the modeling process in Unity3D
Editor, featuring: (1) Create NURBS Surface (Ctrl+G), (2)
Update NURBS Surface (Ctrl+U), (3) Load NURBS Surface
(Ctrl+L), and (4) Write NURBS Surface (Ctrl+W). Initiating
”Ctrl+G” generates a default NURBS surface configured as a
square quad with 4x4 control points. Users can dynamically
refine the NURBS surface by manipulating the positions of
control points or adjusting the radius to modify weights,
followed by the application of changes through ”Ctrl+U.” To
preserve a well-designed NURBS surface, users can write it
to a file using the ”Ctrl+W” command or load a pre-existing
NURBS surface into the scene with ”Ctrl+L.” These NURBS
operations provide an interactive environment for creating and
managing NURBS surfaces within Unity3D Editor.

NURBS Surface. After connecting this manually designed
NURBS surfaces with user-specified Java♭ script via the
PM4VR modeling interface, parametric NURBS surface can



Pa
ra

m
et

er
:
r
=

0
.3

Pa
ra

m
et

er
:
r
=

0
.6

Pa
ra

m
et

er
:
r
=

0
.9

Parameter: R = 0.3 Parameter: R = 0.6 Parameter: R = 0.9

Fig. 5. Different Parameter Values. This figure shows parametric conceptual car models designed with PM4Car using the same
NURBS surface design and the parametric function f2(u, v) under different parameter values of R and r, where R, r ∈ [0, 1].

be generated automatically using PM4Car interface. Mathe-
matically, for each NURBS surface, the control points’ posi-
tions are represented as {pi,j |i ∈ [0,m], j ∈ [0, n]}, and the
control weights are the radius of each control point which are
represented as {wi,j |i ∈ [0,m], j ∈ [0, n]}, then, the NURBS
surface’s parametric equation s(u, v) is represented as:

s(u, v) =

∑m
i=0

∑n
j=0 wi,jb

i
p(u)b

j
q(v)pi,j∑m

i=0

∑n
j=0 wi,jbip(u)b

j
q(v)

, (1)

where bip(u) is the pth order B-spline basis function of the
ith control point. Given knot values {0, ..., ki, ki+1, ..., 1}, if
u ∈ [ki, ki+1], bi0(u) = 1; Otherwise, bi0(u) = 0. We have:

bip(u) = bip−1(u)
u− ki

ki+p − ki
+ bi+1

p−1(u)
ki+1+p − u

ki+1+p − ki+1
(2)

where the knot values are Bezier uniform NURBS knots.

Parametric Function. In the PM4Car interface, in order
to parameterize NURBS surface, NURBS surface s(u, v) is
deformed along normal direction at distance defined as para-
metric function f(u, v). We propose a Java♭ function called
addNURBSSurface(”NURBS name”, f(u, v), u0 : u1, v0 :
v1). Mathematically, we construct the surface by first loading
the NURBS geometry from ”¡NURBS name¿.NURBS” file as

s(u, v); Then, deforming NURBS surface along normal direc-
tion at (u, v) with distance of parametric function f(u, v). This
results in a new parametric surface g(u, v), mathematically, we
have g(u, v) calculated with the following equation:

g(u, v) = s(u, v) +
su(u, v)× sv(u, v)∣∣∣∣su(u, v)× sv(u, v)

∣∣∣∣f(u, v) (3)

IV. EXPERIMENT RESULTS

To assess the effectiveness of our proposed technical ap-
proach, a series of numerical experiments were undertaken on
conceptual car designs using the scriptable parametric model-
ing interface of PM4Car. The implementation of our proposed
approach was executed within Unity 3D with the 2019 version
and generated these experiment results with hardware configu-
rations containing Intel Core i5 CPU, 32GB DDR4 RAM, and
NVIDIA GeForce GTX 1650 4GB GDDR6 Graphics Card.
Figure 4 presents the outcomes of the parametric design pro-
cess for conceptual car models within PM4Car, incorporating
diverse parametric configurations such as NURBS surfaces,
parametric functions, and parameter values. The three columns
illustrate distinct NURBS surface designs, with the corre-
sponding Java♭ scripts for the parametric functions showcased



(a) Parametric Function: func(u, v) = fa(u, v) (b) Parametric Function: func(u, v) = fb(u, v)

(c) Parametric Function: func(u, v) = fc(u, v) (d) Parametric Function: func(u, v) = fd(u, v)

Fig. 6. Different Parametric Functions. This figure shows parametric conceptual car models designed with PM4Car using the
same NURBS surface design and the parameter values of R = 0.5, r = 0.5 under different parametric function settings.

in Fig.3. The second and third rows of Fig.4 display the
impact of different parameter values, specifically R = 0.0 and
R = 0.5, respectively. Moving forward, Fig.5 exhibits results
from PM4Car utilizing the same NURBS surface design and
parametric function f2(u, v) but with varying parameter values
of R and r, where R, r ∈ 0.3, 0.6, 0.9. Fig.6 showcases
parametric conceptual car models with consistent NURBS
surface design and R = 0.5, r = 0.5, but employing different
parametric functions, detailed in Fig.7. Lastly, Fig.8 captures
a designer wearing an Oculus Quest 2 headset, engaged in the
immersive experience of fine-tuning conceptual car parameter
values within PM4Car’s virtual reality environment. For an in-
depth exploration, an experiment result video is available at
the following link: https://youtu.be/ymAvDBE6tdw.

V. CONCLUSION

In this paper, we introduce PM4Car, a scriptable parametric
modeling interface tailored for conceptual car design. Lever-
aging the capabilities of PM4VR, an innovative virtual reality
(VR) extension, PM4Car provides a dynamic platform for
designers to create and refine conceptual car models through
a script-driven approach. The interface incorporates diverse
parametric configurations, including NURBS surface designs,
scriptable parametric functions, and customizable parameter
values. Through PM4Car, designers can engage in an intuitive
design experience within a virtual environment.

Fig. 7. Parametric Functions (Part II).

As shown from the experiment results, PM4Car stands as
a cutting-edge scriptable parametric modeling interface for
conceptual car design, offering a balance between precision
and creativity. Its integration with PM4VR elevates the design
experience, providing designers with a versatile and immersive
platform for crafting innovative car models. This paper out-
lines the efficacy of PM4Car in the context of conceptual car
design and sets the stage for future advancements in scriptable
parametric modeling interfaces.



Fig. 8. User Study. This figure shows a user fine-tuning the conceptual car’s parameter values using PM4Car in virtual reality.

REFERENCES

[1] N. Wang, J. Wan, and G. Gomez-Levi, “Parametric method for applica-
tions in vehicle design,” SAE Technical Paper, Tech. Rep., 2005.

[2] P. Zimmermann, “Virtual reality aided design. a survey of the use of
vr in automotive industry,” in Product engineering: tools and methods
based on virtual reality. Springer, 2008, pp. 277–296.

[3] K. I Kyivska, S. V Tsiutsiura, M. I Tsiutsiura, O. V Kryvoruchko,
A. V. Yerukaiev, and V. V Hots, “A study of the concept of parametric
modeling of construction objects,” Tsiutsiura, Svitlana and I. Tsiutsiura,
Mikola and V. Kryvoruchko, Olena and Yerukaiev, Andrii V. and V.
Hots, Vladyslav, A Study of the Concept of Parametric Modeling of
Construction Objects, pp. 636–646, 2019.

[4] Q.-H. Wang, J.-R. Li, B.-L. Wu, and X.-M. Zhang, “Live parametric de-
sign modifications in cad-linked virtual environment,” The International
Journal of Advanced Manufacturing Technology, vol. 50, pp. 859–869,
2010.

[5] M. Stavric and O. Marina, “Parametric modeling for advanced archi-
tecture,” International journal of applied mathematics and informatics,
vol. 5, no. 1, pp. 9–16, 2011.

[6] M. Turrin, P. Von Buelow, and R. Stouffs, “Design explorations of
performance driven geometry in architectural design using parametric
modeling and genetic algorithms,” Advanced Engineering Informatics,
vol. 25, no. 4, pp. 656–675, 2011.

[7] L. Avallone, G. Monacelli, F. Pasetti, F. Giardina, and F. A. SpA, “Para-
metric design methods for car body design,” in XII ADM International
Conference, Rimini, Italy-Sept. 5th-7th, 2001.

[8] J. Wan, N. Wang, and G. Gomez-Levi, “Parametric modeling method
for conceptual vehicle design,” in International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, vol. 47403, 2005, pp. 403–410.

[9] C. Anthes, R. J. Garcı́a-Hernández, M. Wiedemann, and D. Kran-
zlmüller, “State of the art of virtual reality technology,” in 2016 IEEE
aerospace conference. IEEE, 2016, pp. 1–19.

[10] D. K. Chen, J.-B. Chossat, and P. B. Shull, “Haptivec: Presenting haptic
feedback vectors in handheld controllers using embedded tactile pin
arrays,” in Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, 2019, pp. 1–11.

[11] H. Benko, C. Holz, M. Sinclair, and E. Ofek, “Normaltouch and
texturetouch: High-fidelity 3d haptic shape rendering on handheld virtual
reality controllers,” in Proceedings of the 29th annual symposium on
user interface software and technology, 2016, pp. 717–728.

[12] W. Li, “Planettxt: A text-based planetary system simulation interface
for astronomy edutainment,” in Proceedings of the 2023 14th Inter-
national Conference on E-Education, E-Business, E-Management and
E-Learning, 2023, pp. 47–53.

[13] W. Li, “Creative molecular model design for chemistry edutainment,”
in Proceedings of the 14th International Conference on Education
Technology and Computers, 2022, pp. 226–232.

[14] W. Li, “Insectvr: Simulating crawling insects in virtual reality for
biology edutainment,” ser. ICEMT ’23. New York, NY, USA:
Association for Computing Machinery, 2023, pp. 1–7. [Online].
Available: https://doi.org/10.1145/3625704.3625757

[15] W. Li, H. Huang, T. Solomon, B. Esmaeili, and L.-F. Yu, “Synthesizing
personalized construction safety training scenarios for vr training,” IEEE
Transactions on Visualization and Computer Graphics, vol. 28, no. 5,
pp. 1993–2002, 2022.

[16] G. Avveduto, C. Tanca, C. Lorenzini, F. Tecchia, M. Carrozzino, and
M. Bergamasco, “Safety training using virtual reality: A comparative
approach,” in Augmented Reality, Virtual Reality, and Computer Graph-
ics: 4th International Conference, AVR 2017, Ugento, Italy, June 12-15,
2017, Proceedings, Part I 4. Springer, 2017, pp. 148–163.

[17] W. Li, B. Esmaeili, and L.-F. Yu, “Simulating wind tower construction
process for virtual construction safety training and active learning,”
in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW). IEEE, 2022, pp. 369–372.

[18] D. C. Schwebel, T. Combs, D. Rodriguez, J. Severson, and V. Sisiopiku,
“Community-based pedestrian safety training in virtual reality: A prag-
matic trial,” Accident Analysis & Prevention, vol. 86, pp. 9–15, 2016.

[19] W. Li, J. Talavera, A. G. Samayoa, J.-M. Lien, and L.-F. Yu, “Automatic
synthesis of virtual wheelchair training scenarios,” in 2020 IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR). IEEE, 2020,
pp. 539–547.

[20] W. Li, “Procedural marine landscape synthesis for swimming exergame
in virtual reality,” in 2022 IEEE Games, Entertainment, Media Confer-
ence (GEM). IEEE, 2022, pp. 1–8.

[21] W. Li, B. Xie, Y. Zhang, W. Meiss, H. Huang, and L.-F. Yu, “Exertion-
aware path generation.” ACM Trans. Graph., vol. 39, no. 4, p. 115,
2020.

[22] W. Li, “Terrain synthesis for treadmill exergaming in virtual reality,”
in 2023 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW). IEEE, 2023, pp. 263–269.

[23] W. Li, “Elliptical4vr: An interactive exergame authoring tool for person-
alized elliptical workout experience in vr,” in Proceedings of the 2023
5th International Conference on Image, Video and Signal Processing,
2023, pp. 111–116.

[24] Q. Liu, “The virtual reality technology in art design,” in 2012 2nd
International Conference on Consumer Electronics, Communications
and Networks (CECNet). IEEE, 2012, pp. 2226–2228.

[25] W. Li, “Pen2vr: A smart pen tool interface for wire art design in vr,”
2021.

[26] W. Li, “Synthesizing 3d vr sketch using generative adversarial neural
network,” in Proceedings of the 2023 7th International Conference on
Big Data and Internet of Things, 2023, pp. 122–128.

[27] W. Li, “Pm4vr: A scriptable parametric modeling interface for con-
ceptual architecture design in vr,” in Proceedings of the 18th ACM
SIGGRAPH International Conference on Virtual-Reality Continuum and
its Applications in Industry, 2022, pp. 1–8.


