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ABSTRACT
This comprehensive study explores the enduring fascination with
and scholarly examination of Egyptian hieroglyphs. The investi-
gation focuses on the writing structure of Egyptian hieroglyphs,
employing image and pixel representations with the aim of achiev-
ing accurate reconstruction. The study utilizes a stable diffusion
model and DeepSVG. We investigate challenges in providing pre-
cise reconstructions and evaluate the strengths and weakness of
these methods. Thorough A significant contribution of the study
is the presentation of a dataset comprising both pixel-based and
vector-based images of Egyptian hieroglyphs. The findings con-
tribute to ongoing discussions in linguistics, archaeology, and the
interdisciplinary intersection of AI with historical studies.
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1 INTRODUCTION
Egyptian hieroglyphs have a long history of interpretation and
study. The study of Egyptian hieroglyphs is characterized by a
rich history of interpretation, attracting individuals for diverse
personal and professional reasons. Archaeologists and Egyptol-
ogists focus on deciphering hieroglyphic inscriptions found on
ancient monuments, tombs, and artifacts, extracting information
about buried individuals, historical events, and religious practices.
The unique combination of logographic and alphabetic elements
in Egyptian hieroglyphs makes them a subject of interest for lin-
guists and language enthusiasts exploring ancient languages and
linguistic evolution. Additionally, scholars delve into religious and
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Figure 1: Example of Egyptian hieroglyphs [29]

philosophical texts, recognizing hieroglyphs as vehicles for convey-
ing the spiritual and literary aspects of ancient Egyptian culture.
Beyond a writing system, hieroglyphs serve as a system of symbols
and artistic expression, fostering an appreciation for the artistic
and symbolic intricacies of ancient Egyptian visual communication.
Proficiency in hieroglyphs is valued in professional fields such as
archaeology and museum curation, where understanding ancient
inscriptions is essential. Ultimately, the study of Egyptian hiero-
glyphs contributes significantly to our comprehension of human
history, language development, and cultural evolution, providing a
connection to the enduring legacy of a rich and ancient civilization.

This study investigates the structural aspects of Egyptian hi-
eroglyphs. The exploration commences by employing the Imagen
model [28] and pixel representations of Egyptian hieroglyphs, with
the anticipation that this approach will yield a successful recon-
struction. Subsequently, after conducting numerous iterations using
a stable diffusion model[26], it became apparent that the outcomes
were limited to the slow convergence speed and the possibility of
failure of convergence of the model. This falls short of achieving
an accurate reconstruction of Egyptian hieroglyphs.

Subsequent to these efforts, an alternativemethodology, DeepSVG
[4], was explored; however, it exhibited suboptimal performance.
When supplied with Egyptian hieroglyphs as input data, DeepSVG
demonstrated challenges in comprehending the intricate repre-
sentation of symbols. This limitation is attributed to the inherent
inability of DeepSVG, utilizing a Variational Autoencoder (VAE)
[13], to effectively capture the logical order of symbols.

Furthermore, a comprehensive evaluation of both methodologies
was conducted, resulting in valuable insights. Notably, our contri-
bution to the field encompasses the provision of a dataset featuring
both pixel-based and vector-based images of Egyptian hieroglyphs,
serving as a valuable resource for further research and analysis.

https://doi.org/10.1145/3651671.3651771
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2 RELATEDWORKS
Neural networks play crucial roles in image generation. These artifi-
cial intelligence models, inspired by the human brain’s neural archi-
tecture, excel in capturing and reproducing complex visual informa-
tion. Generative models, particularly Generative Adversarial Net-
works (GANs) [6, 9, 15–17, 19], Autoencoders (AEs) [1, 2, 8, 14, 18],
Diffusion Models (DMs) [7, 12, 22, 27, 31], have emerged as power-
ful tools for synthesizing realistic and diverse images. While the
Imagen model is used in this work, there are other models that also
achieve the goal with different strategies. In textDiffuser [5], the
authors introduce a versatile diffusion model-based framework fea-
turing two stages. Initially, a Layout Transformer locates keyword
coordinates and generates character-level segmentationmasks from
text prompts. Subsequently, the latent diffusion model is fine-tuned
in the second stage, utilizing the generated masks as conditions.
A character-aware loss in the latent space enhances the quality of
generated text regions. Figure 1 illustrates TextDiffuser’s applica-
tion for generating precise text images. TextDiffuser excels in text
inpainting, reconstructing incomplete images with text. Training
employs OCR tools and filtering strategies to create a dataset of 10
million high-quality image-text pairs with OCR annotations.

In the field of vector-based representation and learning, can-
vasVAE [30] studies the content of vector graphic documents and
shows that the document can be divided into a sequence of visual
elements, such as shapes, images, or texts. author trains variational
autoencoders to learn the representation of the documents. In ex-
periments, the author shows that the model named CanvasVAE
contributes a strong baseline for the generative modeling of vec-
tor graphic documents. Different from a pixel-to-pixel method or
vector-to-vector method, Img2Vec [25] uses a text prompt and a
pixel-based image as input and outputs a vector-based image. The
proposed model studies the rasterized input graphic and restores
the vector output graphic image. Instead, we propose a new neural
network that can generate complex vector graphics with varying
topologies and only requires indirect supervision from readily avail-
able raster training images. To enable this, we use a differentiable
rasterization pipeline that renders the generated and composites
vector shapes onto raster canvas.

There is a pixel-to-vector approachmethod [11] that takes advan-
tage of the stable diffusion model. The authors use massive datasets
of captioned images, and diffusion models learn to generate raster
images that can be used to generate vector representations of im-
ages like Scalable Vector Graphics (SVGs). This text-conditioned
diffusion model, trained on pixel representations of images, can be
used to generate SVG exportable vector graphics. The method, Vec-
torFusion, distills abstract semantic knowledge out of a pre-trained
diffusion model. Inspired by recent text-to-3D work, they learn an
SVG consistent with a caption using Score Distillation Sampling.
To accelerate generation and improve fidelity, VectorFusion also
initializes from an image sample. Experiments show greater quality
than prior work for a wider range of styles including sketches.

3 OVERVIEW
The dataset is constructed from the font family NotoSans, which
contains Egyptian hieroglyphs. The fonts of NotoSans can be found
at webpage of Google font, and it is also available on GitHub. This

dataset contains 2,142 data samples, with half of them featuring
a white background with black background and white fonts JPEG
images, and the other half are vector-based SVG images. Each sam-
ple consists of a 400 by 400 pixels sized JPEG image. In the Imagen
paper, authors examined expansive frozen language models, ex-
clusively trained on textual data, exhibit remarkable efficacy as
text encoders for the generation of images from text. Notably, the
author’s observations reveal that enhancing the scale of the frozen
text encoder yields a substantial improvement in sample quality,
surpassing the impact of scaling the size of the image diffusion
model. Additionally, the authors present a novel diffusion sam-
pling technique called dynamic thresholding, designed to harness
elevated guidance weights. Furthermore, the authors underscore
various crucial design choices in the diffusion architecture and pro-
pose a streamlined variant of U-Net to achieve faster convergence
and greater memory efficiency.

DeepSVG model represents a vector approach using SVG com-
mands as input to reconstruct vector graphics, which aligns closely
with our goal of reconstructing Egyptian hieroglyphs fonts. By em-
ploying such a network, we aim to reducememory consumption and
achieve more accurate reconstructions of Egyptian Hieroglyphs.

4 TECHNICAL APPROACH
4.1 The Imagen Method
The Imagen model is a text-to-image diffusion model that takes a
text prompt and a pixel-based image as input, outputting a recon-
structed pixel image. This model is built on the large transformer
languagemodel, T5. The T5 languagemodel encodes text, maintains
image and text alignment on a large scale for image generation and
improves performance. The Imagen model involves two main steps:
first, inputting a prompt into a frozen text encoder to obtain a text
embedding that encapsulates all the relevant text information; sec-
ond, feeding this text embedding into a generative model to instruct
it in generating images. The generative model initially creates low-
resolution image, which is enhanced with two super-resolution
networks. These networks take low-quality image and preceding
text embedding as inputs and produce high-quality images.

The primary focus of the paper is to leverage the potent language
model in Natural Language Processing (NLP) rather than employing
CLIP model[23], as seen in image-text pair trained text encoders.
The rationale behind this choice lies in the substantial amount
of training data available for language models, surpassing that
of image-text pairs. Moreover, the language model’s size dwarfs
current image-text models, suggesting a superior understanding of
text, a prerequisite for generating high-quality images. In the deeper
parsing of the process, the text encoder extracts text information,
performs pooling, and adds the resulting embedding to the original
image to facilitate conditional operations. While there is an option
for direct cross-attention showing that applying cross-attention
yields better results, as evidenced by ablation studies.

4.2 The DeepSVG Method
The DeepSVG model, as detailed in the work by Carlier et al. [4],
assumes particular significance in practical applications involving
Scalable Vector Graphics (SVGs), where users must perform diverse

https://fonts.google.com/noto/specimen/Noto+Sans+Egyptian+Hieroglyphs
https://notofonts.github.io/#egyptian-hieroglyphs
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Token Parameters Description

<SOS> ∅ Start of SVG token.
M (MoveTo) 𝑥2, 𝑦2 Move cursor to end-point (𝑥2, 𝑦2 ) without drawing.
L (LineTo) 𝑥2, 𝑦2 Draw a line to point (𝑥2, 𝑦2 ) .

C (Cubic Bézier) 𝑞𝑥1, 𝑞𝑦1, 𝑞𝑥2, 𝑞𝑦2, 𝑥2, 𝑦2 Draw cubic Bézier curve with control points (𝑞𝑥1, 𝑞𝑦1 ) , (𝑞𝑥2, 𝑞𝑦2 ) , and end-point (𝑥2, 𝑦2 ) .
z (ClosePath) ∅ Close the path by moving cursor back to starting position (𝑥0, 𝑦0 ) .

<EOS> ∅ End of SVG token.

Table 1: Descriptions of SVG Tokens[4].

operations on vector graphics while preserving the authenticity of
their original compositions. It is noteworthy that SVG images are
fundamentally distinct from pixel-based images in their construc-
tion and representation.

Scalable Vector Graphics denoted as SVG, stands as an XML-
based format meticulously crafted for delineating two-dimensional
graphics in a scalable manner. This format establishes a structured
framework for the representation of vector images, endowing them
with inherent support for interactivity and animation. The ensuing
discourse provides an insightful exploration of the unique charac-
teristics inherent in SVG images, thereby elucidating their distinc-
tiveness from their pixel-based counterparts. The following table
describes the commands inside SVG:

In addition, the DeepSVG model provides a hierarchical genera-
tive network model that studies SVG image generation from high-
level shapes to low-level commands, resulting in high-quality image
generation. The model employs a variational auto-encoder (VAE)
[13] structure with an encoder and decoder network. The encoder
incorporates a Transformer-based architecture, processing individ-
ual paths independently before aggregating their representations.
The hierarchical nature of SVG images, consisting of paths with
sequences of commands, is considered in both the encoding and
decoding stages. The feed-forward prediction approach is used for
generating commands and arguments, offering advantages in terms
of reconstruction quality and interpolation smoothness. The model
leverages transformer blocks, and the encoder maintains permuta-
tion invariance of the input paths. The decoder, on the other hand,
does not require this invariance, employing a learned index embed-
ding to break symmetry during generation. The reparametrization
trick is utilized in obtaining the latent vector. The entire architec-
ture is presented as a schematic representation, showcasing the
multi-stage encoding and decoding process.

5 EXPERIMENTAL RESULTS
In this section, we delve into a sequence of training experiments for
the Imagenmodel, which is followed by a transition to the DeepSVG
model in the fourth experiment. Starting with the Imagen model,
the parameters for the stable diffusion experiments are configured
as outlined below:

For Imagen model:
• text_encoder_name = ’t5-large’
• unets = (unet0)
• output_image_sizes = 88
• inference_timesteps = 2000
• cond_drop_prob = 0.1

The default configuration incorporates two U-nets, where Unet
0 has an input size of 32, and Unet 1, operating as an upscaling
model, has an input size of 96. This selection is made considering
the relatively straightforward nature of the sample data in com-
parison to other images, leading us to opt for a simplified network
structure with only one Unet. While considering the limitation of
our hardware, we choose an output image size of 88, which just be
a right fit to our GPU VRAM. For the encoding language model, T5-
large is employed. This model generates text embeddings as float
tensors with dimensions (number of training samples, 10, 1024), and
Boolean tensors representing text masks with dimensions (number
of training samples, 10).

The text embeddings play a pivotal role in serving as the ex-
tracted data representation of the model, projecting textual infor-
mation into a high-dimensional latent space. Simultaneously, the
text masks function to selectively mask certain words in a sen-
tence, contributing to the model’s robustness by predicting the
replacements for masked words.

5.1 Training iterations vs samples
We conducted a training experiment involving the inference of 8
samples at every 500 training iterations, spanning from iteration
0 to iteration 5500. The primary objective of this experiment is to
gain insights into the generated samples’ quality and assess the
learning stage of stable diffusion model.

Two distinct trials were executed during this experiment. The
initial trial utilized the entire dataset as training samples, while the
subsequent trial focused exclusively on the first 12 data samples.
The initial trial did not yield successful data sample generation, as
evidenced by the outcomes depicted in Table 2. Notably, even when
the sampled images contained intricate details after 6000 iterations,
the results indicated that the model struggled to correctly gener-
alize and reconstruct. Conversely, the second trial demonstrated
successful data sample reconstructions for all 8 data samples in-
cluded. This trial exclusively employed the first 12 data samples, all
of which featured human figures. Consequently, it is plausible to
infer that the inclusion of diverse geometries in the full dataset may
have posed challenges to the model’s learning and generalization
capabilities for accurate reconstruction.

The experimental setup utilized a laptop with an RTX 3070 8GB.
To accommodate the constraints of the 8GB VRAM, careful adjust-
ments were made to batch samples and model parameters. The
complete dataset training for each epoch took approximately 58
seconds. However, the extensive duration of more than 112 hours to
complete training for 7000 iterations on the entire dataset is deemed
less than optimal. Despite attempts to enhance speed through half-
precision training, no significant improvements were observed.
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Table 2: A 8 × 8 Image table for Egyptian hieroglyphs generation

5.1 Training iterations vs samples
We conducted a training experiment involving the inference
of 8 samples at every 500 training iterations, spanning from
iteration 0 to iteration 5500. The primary objective of this
experiment is to gain insights into the generated samples’
quality and assess the learning stage of stable diffusion model.

Two distinct trials were executed during this experiment.
The initial trial utilized the entire dataset as training samples,
while the subsequent trial focused exclusively on the first 12
data samples. The initial trial did not yield successful data
sample generation, as evidenced by the outcomes depicted in

Table 2. Notably, even when the sampled images contained in-
tricate details after 6000 iterations, the results indicated that
the model struggled to correctly generalize and reconstruct.

Conversely, the second trial demonstrated successful data
sample reconstructions for all 8 data samples included. This
trial exclusively employed the first 12 data samples, all of
which featured human figures. Consequently, it is plausible
to infer that the inclusion of diverse geometries in the full
dataset may have posed challenges to the model’s learning
and generalization capabilities for accurate reconstruction.

The experimental setup utilized a laptop with an RTX
3070 8GB. To accommodate the constraints of the 8GB

Table 2: A 8 × 8 Image table for Egyptian hieroglyphs generation

5.2 Interpolation over latent space of model
Interpolation over the latent space [3] is a widely adopted technique
among researchers to showcase a model’s generalization capabili-
ties. We applied a similar technique to evaluate the generalization
of our modest model.

The Imagen model is conceptualized as an Encoder-Decoder
structure, where initial features are encoded into latent variable and
continuously denoised to generate raw features. However, the re-
sulting latent variable lacks crucial high-level semantic information
and other essential latent space properties, including interpolation
and feature decoupling.
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Table 3: A 8 × 8 table for interpolation of latent space

VRAM, careful adjustments were made to batch samples and
model parameters. The complete dataset training for each
epoch took approximately 58 seconds. However, the extensive
duration of more than 112 hours to complete training for 7000
iterations on the entire dataset is deemed less than optimal.
Despite attempts to enhance speed through half-precision
training, no significant improvements were observed.

5.2 Interpolation over latent space of model
Interpolation over the latent space [3] is a widely adopted
technique among researchers to showcase a model’s generaliza-
tion capabilities. We applied a similar technique to evaluate
the generalization of our modest model.

The Imagen model is conceptualized as an Encoder-Decoder
structure, where initial features are encoded into latent vari-
able and continuously denoised to generate raw features.

However, the resulting latent variable lacks crucial high-level
semantic information and other essential latent space proper-
ties, including interpolation and feature decoupling.

Ensuring interpolation and perturbation within the Latent
Space align with the manifold of valid image priors is para-
mount. When the valid image prior resides on a manifold,
perturbation, and interpolation should remain within the
neighborhood of the initial value. This guarantees a theoret-
ically seamless transition between base images, preserving
good local coherence in the output image.

In implementing this method, we utilized nn.Upsampling
Bilinear2d [20] from PyTorch to interpolate four selected
text prompts. Leveraging the T5 large language model, we
converted the text prompts into four text embeddings, re-
shaped the text embeddings, and employed nn.Upsampling-
Bilinear2d to generate 64 text embeddings. Due to the larger

Table 3: A 8 × 8 table for interpolation of latent space

Ensuring interpolation and perturbation within the Latent Space
align with the manifold of valid image priors is paramount. When
the valid image prior resides on a manifold, perturbation, and in-
terpolation should remain within the neighborhood of the initial
value. This guarantees a theoretically seamless transition between
base images, preserving good local coherence in the output image.

In implementing this method, we utilized nn.Upsampling Bilin-
ear2d [21] from PyTorch to interpolate four selected text prompts.
Leveraging the T5 large language model, we converted the text
prompts into four text embeddings, reshaped the text embeddings,
and employed nn.Upsampling-Bilinear2d to generate 64 text embed-
dings. Due to the larger text embedding, graphic memory exceeded
8GB, leading CUDA [20] to use memory as a swapping station. To

mitigate this, we slice tensor into smaller sizes to fit VRAM, result-
ing in processing time of approximately 35 minutes to complete
this inference, as opposed to anticipated 5 hours.

Two experimental trials are presented in Table 3 and Table 4,
showcasing the results from diverse viewing angles. The corners
of the tables represent the original text samples without any inter-
polation, while the intermediate samples result from combinations
of different ratios of the four corner samples. Specifically, Table
3 includes samples related to "Seated man," "Man sitting on heel,"
"Crouching man hiding behind a wall," and "Seated man under a
vase from which water flows." Conversely, Table 4 encompasses
varied samples associated with "Crouching man hiding behind a
wall," "Seated man," "Seated man under a vase from which water
flows," and "Fatigued man." Despite differences in the experimental
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text embedding, graphic memory exceeded 8GB, leading
CUDA [19] to use memory as a swapping station. To mit-
igate this, we slice tensor into smaller sizes to fit VRAM,
resulting in processing time of approximately 35 minutes to
complete this inference, as opposed to anticipated 5 hours.

Two experimental trials are presented in Table 3 and Table
4, showcasing the results from diverse viewing angles. The
corners of the tables represent the original text samples with-
out any interpolation, while the intermediate samples result
from combinations of different ratios of the four corner sam-
ples. Specifically, Table 3 includes samples related to "Seated
man," "Man sitting on heel," "Crouching man hiding behind
a wall," and "Seated man under a vase from which water
flows." Conversely, Table 4 encompasses varied samples asso-
ciated with "Crouching man hiding behind a wall," "Seated
man," "Seated man under a vase from which water flows,"
and "Fatigued man." Despite differences in the experimental
setups, a common observation emerges—the recurring and

seemingly random appearance of the man behind the wall.
This suggests that the model struggles to achieve generalized
results under these experimental conditions.

5.3 Clip score
The CLIP Score effectively captures meaningful relationships
between natural language and image pairs through the ac-
quisition of their semantic connections. Feature vectors are
individually derived from the corresponding natural language
and image pairs, followed by the computation of their co-
sine similarity. A higher CLIP Score signifies an elevated
correlation between image-text pairs, indicating a stronger
alignment in semantic content. Consequently, the CLIP Score
serves as a metric for evaluating the match and correlation
levels between natural language and image pairs, with larger
values, approaching 1, indicating a more robust assessment.

In this part of the experiment, we tested the Clip score
[10] of different iterations from 500 to 5500. In Figure 2, the

Table 4: A 8 × 8 table for interpolation of latent space

setups, a common observation emerges—the recurring and seem-
ingly random appearance of the man behind the wall.

5.3 Clip score
The CLIP Score effectively captures meaningful relationships be-
tween natural language and image pairs through the acquisition of
their semantic connections. Feature vectors are individually derived
from the corresponding natural language and image pairs, followed
by the computation of their cosine similarity. A higher CLIP Score
signifies an elevated correlation between image-text pairs, indicat-
ing a stronger alignment in semantic content. Consequently, the
CLIP Score serves as a metric for evaluating the match and correla-
tion levels between natural language and image pairs, with larger
values, approaching 1, indicating a more robust assessment.

In this part of the experiment, we tested the Clip score [10] of
different iterations from 500 to 5500. In Figure 2, the result shows
an improvement from 500 iterations to 2000 iterations, after 2000
iterations the Clip score starts to drop.

5.4 DeepSVG training and testing
For the DeepSVG model, a training regimen of 2000 iterations was
initially planned, yet an early stop occurred at the 800th iteration.
Upon scrutinizing the model’s loss, it became evident that optimal
hyper-parameters were achieved around the 700th iteration. In sub-
sequent testing, we adopted a similar interpolation methodology, as
employed in the Imagen model, to assess the latent space. However,
a notable distinction lies in the absence of an intermediate step
directly available for sampling from the DeepSVG model.
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Table 5: A 12 × 6 Image table for DeepSVG interpolation generation
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result shows an improvement from 500 iterations to 2000
iterations, after 2000 iterations the Clip score starts to drop.

5.4 DeepSVG training and testing
For the DeepSVG model, a training regimen of 2000 iter-
ations was initially planned, yet an early stop occurred at
the 800th iteration. Upon scrutinizing the model’s loss, it
became evident that optimal hyper-parameters were achieved
around the 700th iteration. In subsequent testing, we adopted
a similar interpolation methodology, as employed in the Im-
agen model, to assess the latent space. However, a notable
distinction lies in the absence of an intermediate step directly
available for sampling from the DeepSVG model.

In the context of DeepSVG, the interpolation method relies
on two keyframes, aiming to generate intermediate frames

through shape morphing. This iterative approach facilitates
the incorporation of hand-drawn keyframes at each step until
a satisfactory outcome is achieved. Notably, our findings in-
dicate that this model predominantly generalizes to contours
of Egyptian hieroglyphs. Consequently, in aforementioned ex-
periment, we deliberately selected sampler geometry shapes
to showcase this method’s efficacy in a more limited scope.

6 DISCUSSION
An insightful observation gleaned from the Imagen training
experiment is encapsulated in the 8×8 Image table presented
in Table 2. This table offers a visual narrative of the stan-
dard stable diffusion model’s training trajectory, gradually
transforming noisy inputs into accurately reconstructed im-
ages. Notably, from iteration 2500 onward, a discernible shift
occurs, with the majority of cells depicting human forms.
This suggests a sudden emergence of learning, indicative of
the model’s rapid generalization. The speed of this learning
phenomenon is such that within a mere dozen iterations, the
model undergoes a substantial performance shift.

Subsequently, starting at iteration 3500, the model attains
a stage of complete image generation, with pixel quality de-
tails reaching a zenith. Interestingly, by the conclusion of
iteration 4500, the image quality exhibits minimal variance
compared to the state at iteration 4000. However, an intrigu-
ing observation emerges between iterations 3500 and 4500,
where the generated images display instability. This phenom-
enon is attributed to Imagen’s utilization of the T5 language
model [23], introducing fluctuations, particularly when the
language model encounters descriptions not typically encoun-
tered during its training. Consequently, the Imagen model
can encounter challenges in producing accurate responses.

Table 5: A 12 × 6 Image table for DeepSVG interpolation generation
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In the context of DeepSVG, the interpolation method relies on
two keyframes, aiming to generate intermediate frames through
shape morphing. This iterative approach facilitates the incorpo-
ration of hand-drawn keyframes at each step until a satisfactory
outcome is achieved. Notably, our findings indicate that this model
predominantly generalizes to contours of Egyptian hieroglyphs.

6 DISCUSSION
An insightful observation gleaned from the Imagen training experi-
ment is encapsulated in the 8 × 8 Image table presented in Table 2.
This table offers a visual narrative of the standard stable diffusion
model’s training trajectory, gradually transforming noisy inputs
into accurately reconstructed images. Notably, from iteration 2500

onward, a discernible shift occurs, with the majority of cells depict-
ing human forms. This suggests a sudden emergence of learning,
indicative of the model’s rapid generalization. The speed of this
learning phenomenon is such that within a mere dozen iterations,
the model undergoes a substantial performance shift.

Subsequently, starting at iteration 3500, the model attains a stage
of complete image generation, with pixel quality details reaching a
zenith. Interestingly, by the conclusion of iteration 4500, the image
quality exhibits minimal variance compared to the state at iteration
4000. However, an intriguing observation emerges between itera-
tions 3500 and 4500, where the generated images display instability.
This phenomenon is attributed to Imagen’s utilization of the T5 lan-
guage model [24], introducing fluctuations, particularly when the
language model encounters descriptions not typically encountered
during its training. Consequently, the Imagen model can encounter
challenges in producing accurate responses. In the context of the
latent space interpolation experiment, multiple trials were meticu-
lously conducted to ensure the reliability of the conclusions drawn.
The results presented in Table 3 were derived from a model trained
with 4500 iterations, while those in Table 4 originated from a model
trained with 5000 iterations. Trial associated with the model trained
for 5500 iterations exhibits an overfitting pattern, manifesting in a
lack of variation in latent space.

The diffusion model might not produce a correct representa-
tion, while DeepSVG, incorporating a VAE, struggles to capture the
logical order of symbols. Concerns arise regarding the DeepSVG
model’s proficiency in capturing the semantics of SVG commands
within its latent space. As the table 5 showed, it is posited that
the model lacks the necessary depth in this latent space to recon-
struct the intricate and abstract nature of SVG commands. Notably,
SVG commands represent highly abstract ideas, characterized by
non-linearity, high dimensionality, and non-convex optimization
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In the context of the latent space interpolation experiment,
multiple trials were meticulously conducted to ensure the
reliability of the conclusions drawn. The results presented
in Table 3 were derived from a model trained with 4500
iterations, while those in Table 4 originated from a model
trained with 5000 iterations. Notably, trial associated with
the model trained for 5500 iterations exhibits an overfitting
pattern, manifesting in a lack of variation in the latent space.

The diffusion model might not produce a correct represen-
tation, while DeepSVG, incorporating a VAE, struggles to
capture the logical order of symbols. Concerns arise regarding
the DeepSVG model’s proficiency in capturing the semantics
of SVG commands within its latent space. As the table 5
showed, it is posited that the model lacks the necessary depth
in this latent space to reconstruct the intricate and abstract
nature of SVG commands. Notably, SVG commands rep-
resent highly abstract ideas, characterized by non-linearity,
high dimensionality, and non-convex optimization challenges.
In contrast to pixel-based information, these abstract fea-
tures pose difficulties for the model’s accurate interpretation.
Furthermore, neural networks like DeepSVG often operate
in high-dimensional spaces due to their numerous parame-
ters. Addressing the intricacies of high-dimensional spaces
presents computational challenges, making the formal proof
of statements in such spaces intensive. Traditional optimiza-
tion proofs, primarily designed for convex problems, may not
be directly applicable in this context. Thus, the abstract and
high-dimensional nature of SVG commands, coupled with
the computational complexity of high-dimensional spaces,
raises questions about the model’s capacity for robust recon-
struction without clear formal guarantees.

7 CONCLUSION AND FUTURE WORK
In this study, we delved into the intricacies of reconstructing
Egyptian hieroglyphs, employing both pixel-based and vector-
based methodologies. Our discernments highlight the superior
performance of the pixel-based model, Imagen, in contrast to
the vector-based counterpart, DeepSVG. To comprehensively
evaluate the generalization capabilities and convergence of
these models, we conducted a series of experiments, providing
a nuanced review of the strengths and limitations inherent in
each approach. As a noteworthy contribution to the research
community, we furnish a dataset featuring Egyptian hiero-
glyph images in both pixel-based and vector-based formats.

The success demonstrated by the Imagen model in gener-
alization prompts future exploration, where we aim to delve
into advanced methodologies such as Imagen 2, Img2Vec,

and VectorFusion. Imagen 2, being a recent development,
intrigues us, and we seek to discern its advancements over
the initial version. Furthermore, Img2Vec’s unique approach
of utilizing pixel-based images to reconstruct vector-based
images aligns seamlessly with our project objectives, warrant-
ing a closer examination. Encouraged by positive outcomes
associated with these methodologies, we plan to integrate
them into our ongoing research.
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challenges. In contrast to pixel-based information, these abstract
features pose difficulties for the model’s accurate interpretation.
Furthermore, neural networks like DeepSVG often operate in high-
dimensional spaces due to their numerous parameters. Addressing
the intricacies of high-dimensional spaces presents computational
challenges, making the formal proof of statements in such spaces
intensive. Traditional optimization proofs, primarily designed for
convex problems, may not be applicable in this context. Thus, the
abstract nature of SVG commands and computational complexity
raises questions about model’s capacity for robust reconstruction.

7 CONCLUSION AND FUTUREWORK
In this study, we delved into the intricacies of reconstructing Egyp-
tian hieroglyphs, employing both pixel-based and vector-based
methodologies. Our discernments highlight the superior perfor-
mance of the pixel-based model, Imagen, in contrast to the vector-
based counterpart, DeepSVG. To comprehensively evaluate the
generalization capabilities and convergence of these models, we
conducted a series of experiments, providing a nuanced review
of the strengths and limitations inherent in each approach. As a
noteworthy contribution to the research community, we furnish a
dataset featuring Egyptian hieroglyph images in both pixel-based
and vector-based formats.

The success demonstrated by the Imagenmodel in generalization
prompts future exploration, where we aim to delve into advanced
methodologies such as Imagen 2, Img2Vec, and VectorFusion. Im-
agen 2, being a recent development, intrigues us, and we seek to
discern its advancements over the initial version. Furthermore,
Img2Vec’s unique approach of utilizing pixel-based images to re-
construct vector-based images aligns seamlessly with our project
objectives, warranting a closer examination. Encouraged by pos-
itive outcomes associated with these methodologies, we plan to
integrate them into our ongoing research.
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