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Figure 1: User Study 2: Experimental Process Details.

1 USER STUDY 1: TERRAIN MANUAL DESIGN.

We recruited 15 undergraduate students to participate in this terrain
manual design experiment. Every participant is asked to design
a terrain using the default terrain editor embedded in Unity3D, a
terrain brush that can raise or lower the terrain using custom shapes.
We developed an easy-to-use plugin to help users visualize the
terrain errors during their terrain design process. Those design
errors are path elevation errors, smoothness errors, and water errors
which are calculated in the same way as our proposed optimization
approach. After explaining each type of error to the users, they will
be given at most one hour to design their own terrain to match the
target path as much as possible where the target path is specified
as an orange curve and the generated path is a cyan curve lying on
their designed terrain. During the study, we track the number of
error analyses (called efforts) and the time needed to complete the
design task. The assigned task is the same as the first row in Figure
8 (Main Paper) Seattle terrain case. After the study, we ask users’
general feedback about their manual terrain design experiences.

Figure 2: Statistics of Study 1.

Statistics. Figure 2 shows
the box plot of the ex-
perimental results of User
Study 1. Figure 2(a) shows
the time and efforts users
made during the terrain
manual design process. Ac-
cording to the statistical
analysis, the time (mins)
spent by users is (AVG:
31.33; STD: 17.11; MD:
36) and the effort (num-
ber of error analyses) spent
by users is (AVG: 68.26;
STD: 45.26; MD: 60). Fig-
ure 2(b) shows the design
errors made by the users.
The elevation errors made by users are (AVG: 0.154; STD: 0.13;
MD: 0.09), the smooth errors made by users are (AVG: 0.39; STD:

User Time Effort Elevation Smooth Water
1 41 60 0.1 0.5 0.01
2 18 12 0.29 0.59 0.12
3 44 92 0.09 0.09 0.06
4 39 52 0.27 0.39 0.01
5 59 154 0.05 0.58 0.01
6 13 81 0.06 0.28 0.04
7 10 87 0.48 0.13 0.01
8 30 29 0.06 0.45 0.09
9 12 15 0.08 0.43 0.09

10 36 59 0.1 0.5 0.003
11 13 5 0.29 0.59 0.12
12 59 91 0.07 0.14 0.28
13 39 52 0.27 0.39 0.01
14 44 154 0.04 0.59 0.01
15 13 81 0.06 0.28 0.04

Table 1: Detailed Result of Study 1.

0.17; MD: 0.43), and the water errors made by users are (AVG:
0.05; STD: 0.07; MD: 0.04). Compared to the errors made by our
optimization approach as shown in Figure 8 (Main Paper)’s first row
of the Seattle terrain case which is (Elevation: 0.05; Smooth: 0.07;
Water: 0.03), our automatic synthesized terrain overperforms the
user’s manual design significantly. At the same time, our approach
only takes 2 mins to optimize the terrain in 500 iterations, which is
much faster than users’ average design time (about 30 mins). Please
refer to more details about users’ general feedback about the manual
terrain design experiences in Section 4.

2 USER STUDY 2: EXPERIMENTAL PROCESS DETAILS

Before User Study 2, we manually set up the workout profile on the
treadmill device called The True, the treadmill can automatically
adjust its speed and inclines according to the workout profile settings
as shown in Figure 1 (a). We build a VR auto-navigation program on
Occulus Quest 2 VR headset. When the treadmill program and this
VR program are started at the same time, the motion of the treadmill
will be automatically synchronized with the virtual navigation. For
example, when the treadmill’s incline goes up, players automatically
go up in virtual scene simultaneously. During User Study 2, we let
participants try two VR programs after the treadmill device is set up



Figure 3: User Study 1: Terrain designs. Grayscale images (512x512 pixels) are the high-resolution heightmaps designed by 15 participants.
It’s challenging and time-consuming for users to manually design terrains that satisfy the workout profile path constraints.

User Enjoyable Immersive Fun Realistic Relaxing
1 3 6 4 2 6
2 6 3 5 5 7
3 5 6 7 2 7
4 5 3 6 1 6
5 5 6 6 5 5
6 3 4 4 3 4
7 2 4 5 4 3
8 6 7 7 6 7
9 3 6 7 5 2

10 6 6 7 3 5

Table 2: Perception Score of Study 2: City on Ground.

with the same workout profile: One is walking within an urban envi-
ronment generated on a flat terrain called City on Ground as shown
in Figure 1 (b). Another one is walking within an urban environment
generated on our synthesized terrain called City on Hill as shown in
Figure 1 (c). This user study is designed to investigate whether the
compatibility between the elevation change in VR display and the
elevation change on treadmill devices can significantly improve the
user’s workout experience.

3 USER STUDY: DETAILED RESULTS

Detailed results of Study 1 are reported in Table 1 including the
time and efforts users made during the terrain manual design process
and the design errors made by the users. Collected data from User
Study 1 include the number of error analyses (called efforts) and
time complete the tasks (in minutes) and the design errors made by

User Enjoyable Immersive Fun Realistic Relaxing
1 5 6 5 1 6
2 4 7 7 6 7
3 5 7 6 3 7
4 6 7 6 6 6
5 6 6 6 5 5
6 3 4 4 3 4
7 6 6 4 3 6
8 6 7 7 5 7
9 5 7 7 5 6

10 6 7 7 3 5

Table 3: Perception Score of Study 2: City on Hill.

the users in the end, which include path elevation errors, smoothness
errors, and water errors. Perception scores of Study 2 for City on
Ground are reported in Table 2 and Perception scores of Study 2
for City on Hill are reported in Table 3. Details of the participant
information are: For User Study 1, there are 9 males and 6 females
among the 15 participants. For Study 2, among the 10 participants,
there are 6 males, 4 females, and 3 have played VR games before.
All of the participants are aged between 19 to 22 years old.

4 USER STUDY 1: GENERAL FEEDBACK

After User Study 1, we asked two questions about manual terrain
design experiences including Q1: ”How do you think of this de-
signing experience in general?” and Q2: ”Do you think this is an
efficient way to design?”. According to the user’s answers to the
questions, in general, from the user’s experiences, it was extremely
hard to consider all of these three terms together during the design,



(a) The initialization. (b) The 2Kth iteration. (c) The 4Kth iteration. (d) The 6Kth iteration. (e) The 8Kth iteration. (f) The 10Kth iteration.

(g) The 20Kth iteration. (h) The 40Kth iteration. (i) The 60Kth iteration. (j) The 80Kth iteration. (k) The 100Kth iteration. (l) The final result.

Figure 4: RaLSGAN training process. Grayscale images (512x512 pixels) show the high-resolution heightmaps generated with the RaLSGAN
trained after a different amount of iterations. As shown in (a), the RaLSGAN trained before 2K iterations generate random noises. Through
(b)-(l), randomly synthesized terrains look more and more realistic compared to the ground truth data from real-world terrain heightmaps.

even though some of them have a good result in minimizing the
elevations error, it turns out to be a very large smoothness error in
the end. However, most of them have a good result about the water
error as the water region is textured as blue and is easy to check out.
Some students that have the first time tried this type of design tool
feels good about this designing experience in general. Someones
think the controls were very intuitive and did not require a large
amount of time to understand and learn. Someone even thought this
designing experience was very similar to painting and creating art,
so have lots of fun with it. But someone thinks it was challenging
when trying to continually improve on the design and believe that
the experience in a larger scale terrain design could get very difficult
and messy. Someone thinks the error fluctuated greatly at some
times and a lot of it was trial and error. And someone tried hard
to make that terrain smooth. Some users do not think this is an
efficient way to design especially on a larger scale or long term and
think doing this seems very meticulous. Therefore, a conclusion
that automation in terrain design process has its values and potential
and our proposed approach can be applied to the terrain design for
exertion games and release game designers’ burden.

5 USER STUDY 2: GENERAL FEEDBACK

After User Study 2, we ask a few questions about users’ VR walking
experience in City on Hill and City on Ground. According to the
user’s feedback about the VR experience, someone liked the City
on Hill that view downhill was very exciting. Someone liked the
terrain a lot and thought it was cool to look back and see the path
walked and the hills surrounding. Someone liked climbing the
mountains and liked that the VR visual matched up to what was felt
when the treadmill’s elevation changed and liked how the game and
treadmill interacted with the incline. Someone thought it was cool
to see something moving instead of just staying in the same place
while walking on a treadmill as a change of scenery helps enjoy the
workout more. Some users felt very much enjoyed that can exercise
while having fun. Some users think the game aspect of it makes them
forget that doing something boring like exercise. Someone hoped
love to see more VR games in the future based around treadmills
and similar exercises (like running in place). Someone believed
this game was very well in simulating a realistic walk through a
city on the hill while encouraging physical activity. Some users
think that walking on a treadmill is boring, however, having realistic

scenery through VR helps them go through the process of using the
treadmill for physical activity. In general, City on Hill was more
impressive than City on Ground as more users emphasize how the
compatibility between the elevation change in VR display and the
elevation change on treadmill device indeed improves their workout
experience. This coincides with the conclusion of the statistical
test that shows VR walking experience in City on Hill is much
more enjoyable, immersive, fun, realistic, and relaxing than the VR
walking experience in City on Ground.

6 USER STUDY 1: MANUAL TERRAIN DESIGN RESULTS

We recruited 15 student users to design a terrain using the Unity3D
terrain editor extended with a plugin we developed to visualize their
design errors including the path elevation errors, smoothness errors,
and water errors. As shown in Figure 3, users tend to propose a trivial
solution that only elevates the surrounding area of the terrain where
the path is passing through to make it match with the target path. But
obviously, this results in an unrealistic virtual environment. Also,
lack of the terrain details makes the result not realistic too. Therefore,
compared to users’ manual designs, our proposed approach has
an faster speed that needs ignorable manual efforts but results in
fewer design errors while keeping the terrains realistic which are
synthesized with well-trained RaLSGAN.

7 HIGH-RESOLUTION HEIGHTMAP

Figure 5: Sample.

In our proposed solution, we use a
data-driven approach to synthesize high-
resolution terrain heightmaps in real-time
using a variation of the Standard Genera-
tive Adversarial Network (SGAN) called
Relativistic Average Least Square Gener-
ative Adversarial Network (RaLSGAN).
The training process on the SGAN is ap-
plied on two separate convolutional or
fully-connected neural networks which are
generator G and discriminator D. The generator captures the po-
tential distribution of real data samples and generates new data
samples, namely, fake data. The discriminator is a classifier to
distinguish whether the input data is real or fake. Then the train-
ing process is achieved with an optimization process through a
min-max loss function, ending with the fact that the ”worse” per-



formance of the discriminator results in the ”best” performance of
the generator. The loss function for discriminator D is defined as:
LD(D,G) = logD(x)+ log(1−D(G(z)), where data x is from the
real data distribution while z is from the random distribution (noise)
called a latent vector, and G(z) is the output of the GAN’s genera-
tor. On the other side, the goal is to maximize the loss function for
generator G which is LG(D,G) = log(D(G(z)).

However, SGAN is hard to converge to a good solution for synthe-
sizing realistic high-resolution images as the optimization process
is a divergence maximization. Therefore, it becomes easier to in-
troduce noises onto the synthesized images and even not be able to
converge at all to synthesize realistic images. Therefore, by intro-
ducing a “relativistic discriminator” which estimates the probability
that the given fake data is more realistic than randomly sampled
real data, Relativistic GANs (RGANs) are significantly more stable
and generate higher quality data samples than their non-relativistic
counterparts. The main difference between SGANs and RGANs
has resided in their goals, SGANs’ are hoping to make both fake
data and real data look real in the end, instead, RGANs make their
goal even harder to achieve, that is hoping to make fake data look
real but real data look fake at the end, which means fake data look
”more real” than real data. So, in RaLSGAN, the Mean Square Error
(MSE) loss functions for discriminator D and generator G are:

LD =
∣∣D(G(z))−

(
D(x)−1

)∣∣2 + ∣∣D(x)−
(
D(G(z))+1

)∣∣2 (1)

LG =
∣∣D(G(z))−

(
D(x)+1

)∣∣2 + ∣∣D(x)−
(
D(G(z))−1

)∣∣2 (2)

Figure 4 shows the training process of RaLSGAN. We down-

load grayscale images (512x512 pixels) of high-resolution terrain
heightmap images from the Kaggle website [1] which provides a
4GB dataset of earth terrain, height, and segmentation map images
including more than 5,000 images. After a preprocessing of the raw
data including adjusting the brightness and contrast, trimming to
fixed sizes, redirecting to the correct folder, etc., we feed the dataset
into the RaLSGAN as the real data given the parameter settings are
latent Vector Z whose length is 128, 4 convolutional layers for dis-
criminator D (learning rate=0.0001, Adam optimizer) and Generator
G (learning rate=0.0025, Adam optimizer), and the batch size is 64.

As shown in Figure 4 (a), the RaLSGAN trained after 2K itera-
tions are still generating random noises that do not look like terrain.
However, after 100K iterations, the final result shown in Figure 4
(j) looks realistic compared to the ground truth data downloaded
from the real-world terrain height maps. Figure 5 shows sample
data in the Kaggle terrain dataset. As we can see, both heightmaps
as shown in Figure 4 (j) (generated) and in Figure 5 (downloaded)
contain detailed geological structures such as the hydraulic erosions.
Therefore, well-trained RaLSGAN can generate different terrains by
adjusting latent vector z for terrain inverse procedural modeling.
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