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Fig. 1: Demo of IslandPaint: a smart digital painting interface for floating island design. Given the user’s arbitrary digital
painting of floating island (left), the 3D model of the floating island is automatically generated with our approach (right).

Abstract—In this paper, we present a smart digital design inter-
face, IslandPaint: digital painting floating island design. Through
IslandPaint, users can design 3D floating islands with simple
2D single-view conceptual digital paintings. After the procedural
modeling process proposed by us, 3D floating islands look like the
original 2D paintings will be automatically generated. As shown
in Figure 1, a demo of our proposed interface is presented: The
left subfigure shows a user’s original digital painting of a floating
island; the right subfigure is the 3D model generated with our
approach. Demo video of this example can be accessed through
this link: https://youtu.be/YXgmF89UIvY. Given our proposed
interface, floating islands design will become easier for digital
art designers, digital multimedia producers, digital movie makers,
and digital game authors.

Index Terms—digital culture, digital art design, digital paint-
ing, interactive interface, procedural modeling

I. INTRODUCTION

With the rapid development of digital multimedia tech-
nologies, digital culture becomes a critical part of people’s
lives. As important ingredients of digital culture, digital arts,
digital movies, and digital games are gaining more and more
popularity among those young people. Computer graphics
technology plays an important role in digital art design.
With a realistic graphics rendering engine, various types of
amazing effects can be visualized realistically on screens,
or even on immersive devices. Given these inevitable trends
of digital culture’s progressing and propagating, computer
graphics modeling technologies open people’s field of view.
The virtual world is beyond the imagination and not beneath
the facts. Physics laws in the limited real-world will no more
exist in the entire virtual digital world. The floating island is
definitely solid proof of this point of view.

As a direct derivation of the digital culture, floating islands
are those islands floating in the sky or space that can never be
seen in the natural world. Due to the attractive visual effects
and their amazing existence, floating islands are becoming
more and more widely welcomed by digital art designers,
digital movie conductors, digital game authors, players, and
audiences. Typically, floating islands are the terrain blocks that
look like those mountains which are pulled out from the soils
and they mostly look like a small part of a terrain that is cut
out from a larger part of the terrain.

However, traditional terrain procedural modeling methods
are not easily applied for procedural floating island generation.
Even though there are some existing works are aiming at gen-
erating floating islands automatically, most of their approaches
are based on complex logic flow and haven’t considered the
well-studied terrain features. Also, none of the existing works
have considered the interactive user interface for procedural
floating island modeling. Therefore, it is challenging to devise
an efficient procedural modeling approach to automatically
synthesize the floating island from users’ conceptual design. In
this paper, we present a digital painting-based interface, Island-
Paint, to help users design their floating island with conceptual
digital paintings. Contributions of our work include:

• Devising a novel digital painting-based interface for float-
ing island procedural modeling.

• Conducting experiments to demonstrate the results of dig-
ital painting-based floating island procedural modeling.

• Discussing the limitation of our approach and propose
future works to extend our interface, to inspire the follow-
up works on this research direction.



Fig. 2: Overview of our technical approach.

II. RELATED WORKS

Terrain Procedural Modeling. Terrain procedural modeling
technologies have been widely studied in computer graphics
research communities. The history of research works on
terrain procedural modeling can be dated back to late 20th
centuries. Since 1982, Fournier et al. [1] propose stochastic
models to add fractal details on curves and surfaces, the idea
of procedural terrain modeling has born. However, the first
work on terrain procedural modeling might be started even
earlier. In 1985, the idea of image texture synthesizer for
terrain modeling has been proposed by Perlin et al. [2]. In
1989, the first eroded fractal terrain has been generated by
Musgrave et al. [3]. After then, procedural terrain texturing
modeling approach have been widely studied by Ebert et
al. [4] in 2003. Since 2007, digital elevation models have
been applied to terrain synthesis [5]. With the advanced
technologies in parallel computing give birth, tasks for
generating complex procedural terrain are moved from
CPU to the GPU in 2007 [6]. At the same time, special
terrain features, such as spheroidal weathering have been
modeled by Beardall et al. [7]. In 2009, with the notion of
human-centered computation, interactive user interfaces have
been applied onto terrain procedural modeling [8]. At the
same time, other complex terrains, such as arches have been
successfully modeled by Peytavie et al. [9]. Later, in 2014,
procedural generation of 3D canyons has been studied by De
et al. [10]. In 2015, parallelity, realism, and controllability
have been systematically incorporated in the terrain procedural
modeling process. In 2017, volumetric terrain features have
been considered in the procedural generation process [11].
Recently, desertscape terrain generation approach is proposed
by Paris et al. [12] in 2019. At the same time, procedural
modeling techniques in riverscapes synthesis has been studied
by Peytavie et al. [13]. Most recently, Argudo et al. [14]
have systematically simulated the growth of glaciers terrains.
Obviously, there is a trend in the research communities that
two factors are very important considerations for terrain
procedural modeling: one being considering the scientific
aspect of the terrain features while another being the
interaction and controllability from the users. Therefore,
comparing with other existing work on floating island
synthesis, our work will emphasize more on these two factors
for interactive procedural floating island generation.

Procedural Floating Islands. Designing and generating float-
ing islands or floating continent is an interesting topic for
digital movies and games designs. There are lots of works,
especially, within the digital multimedia design industry, are
focusing on how to generate floating islands smartly. For
example, Houdini procedural modeling tutorials [15] have
been posed to teach users how to generate floating islands
using Houdini [16], a 3D animation software application
developed by Toronto-based SideFX. Houdini has been widely
adopted as the PRISMS suite of procedural generation soft-
ware tools. Similarly, 3D Blender [17] tutorials share similar
methods [18], [19] and a voxel plugin [20] shows a procedural
method to generate voxel-based floating islands. However,
all methods are very hard for the users to parameterize an
arbitrary floating island from their own wills, and the learning
curves to master these interfaces are very high for beginners.
Therefore, those approaches to generate floating islands are
lack of users’ control. On other hand, Houdini or Blender-
based procedural modeling approaches have not considered
professional procedural modeling approaches [4], [21], [22]
studied by researchers. Rather, they all are trying to deform
a given manifold surface, such as a sphere, through different
sorts of noises, to generate different types of floating terrains.
Another related work is proposed by Sandberg et al. [23],
but unfortunately, their work is directly deleting the triangles
outside the terrain shape and directly copying the bottom mesh
from the top mesh, therefore, it results in very poor modeling
quality. Although these works can be applied to digital arts
or games, the limited controls from the users will result in
the degradation of the originality and the values of their
artworks designs. Different from these existing works, our
work considers more on the user’s control over their floating
island designs. Also, we model the floating island based on
professional terrain procedural modeling approaches.

III. OVERVIEW.

Figure 2 shows the overview of our approach. Given an
image of 2D conceptual digital painting floating island design
as input (a), we segment the top image (b) and bottom image
(c) according to the color palette, which in this case is grass
blue as the top and dark brown as the bottom. Then, we do
separate tasks for the top and bottom images differently. For
the top image, we do an image shape distribution analysis



(a) Input of the top shape image. (b) Silhouette extraction.

(c) Polygonization of silhouette. (d) Polygonized terrain mesh.

Fig. 3: Illustration of the terrain shape extraction process.

along the y-axis (the blurred image on top) to get the basemap
for the floating island’s top heightmap. Simultaneously, we to
a contour polygonization as the border shape of the floating
island. For the bottom image, we apply a half-distribution
analysis of the image shape and then we get a silhouette of
the bottom part of the floating island (the white curve on the
bottom). Then, we multiply the half-distribution onto the top
image so that we get a basemap for the floating island’s bottom
heightmap (the blurred image on the bottom). Detailed term
concepts and mathematical definitions will be expanded and
explained in the following section.

Then, according to the feature map of a generated terrain
(d), we synthesize the top mesh of the floating island through
the top image, top basemap, and contour polygon (terrain
shape). Similarly, we synthesize the bottom mesh of the
floating island through the top image, bottom basemap, and
contour polygon. In order to avoid any intervals between the
top mesh and the bottom mesh, we introduce the middle mesh
as a strip that connects the silhouette of the top mesh and the
silhouette of the bottom mesh. After the last step of combining
these three terrain meshes seamlessly, we get the synthesized
floating terrain as the output of our approach (e).

IV. TECHNICAL APPROACH

In this section, we will present the detailed concepts and
mathematical definitions for those terms mentioned in the
previous section. Noted that our approach is proposed based
on an important hypothesis that the user’s original digital
painting design is the abstract conceptual design and loss
the depth or texture details. For simplification of the digital
image understanding process, we assume the top shape of the
original floating island conceptual design is flat.

Terrain Shape Extraction. Given the above assumption, we
can extract the terrain shape from the top image in three
steps shown in Figure 3. First, as shown in (b), we need to
track the silhouette of the white area of the top image using
a directional table-based binary image silhouette extraction
algorithm [24]. Next, as shown in (c), given these pixels in
the extracted silhouette from the top image, we do a line
fitting algorithm to approximate the shape of the silhouette
as a polygon, we also call this a polygonization process of

the top shape. Polygonization is important for reducing the
noises on the edge of the synthesized floating island terrain.
Then, the last step is to trim the 2D square terrain mesh into
polygonized terrain mesh. In this step, as shown in (d), we
take advantage of the active edge table (AET) polygon filling
algorithm [25] and modify it to generate the trimmed terrain
mesh with polygon edges [26]. This terrain shape extraction
process can be both applied on the top mesh and the bottom
mesh synthesis for the procedural floating islands generation.

Terrain Basemap Synthesis. Basemap of the terrain is an
important concept for the elevation-based terrain procedural
modeling techniques. Basemap is typically used for mixing
the elevation map of terrain through two different elevation
maps, one is the basemap B(u, v) while another is the featured
heightmap H0(u, v). Then, the elevation map of the result
terrain is the H(u, v) = α(βB(u, v) + (1 − β)H0(u, v))
where α ∈ R is the heightmap scale factor and β ∈ [0, 1]
is the basemap scale factor. Through this calculation, featured
heightmap H0(u, v) is used to adding features on top of the
terrain, while basemap B(u, v) plays an important role in
setting the foundation of the terrain. In our work, we consider
the basemap to synthesize the terrain heightmap from a given
featured heightmap H0(u, v).

From the observations
that floating islands have
lower elevations near the
edge while higher elevations
far away from the edge,
therefore, we consider a sta-
tistical method to evaluate the basemap B(u, v), we call
it image shape distribution analysis. The idea is given a
texture coordinate (texcoord) on a binary image and given
a direction, say, v-axis, then the image shape distribution
analysis along v-axis will return to two functions: shape
mean µ(v) and shape deviation σ(v). Let binary image
I(u, v) returns 1 where texcoord (u, v) is inside the shape;
Otherwise, I(u, v) returns 0. Then, as shown in the above
figure, shape mean µ(v) is lying on the central curve of the
image shape. Mathematically, µ(v) = (umin(v) + umax(v))/2
where umin /max(v) = min /max{u|I(u, v) = 1}. Similarly,
σ(v) = (umax(v) − umin(v))/2. Then, we calculate the
basemap of terrain B(u, v) as:

B(u, v) =

{
sin(cos−1

(
|u−µ(v)|

σ(v)

)
) σ(v) ̸= 0

0 σ(v) = 0
(1)

Bottom Shape Analysis. In
order to analyze the shape
of the bottom part of the
floating island, we define
another image analysis
calculation: half-distribution
analysis of the image shape. This calculation is similar to
the previous distribution analysis process. But this time we
introduce two texcoords vmin and vmax. Which is the left most
point and right most point on the image shape. Mathematically,



(a) Floating island design 1. (b) Floating island design 2.

(c) Floating island design 3. (d) Floating island design 4.

(e) Floating island design 5. (f) Floating island design 6.

Fig. 4: Experimental results of procedural floating island generations given different user inputs.

vmin /max = min /max{v|∃u ∈ [0, 1] ⇒ I(u, v) = 1}.
Then, as shown in the above figure, the bottom shape
curve cb(v) can be calculated through this formula:
cb(v) = µ(v) + σ(v) − [(1 − t)µ(vmin) + tµ(vmax)], where
t = (v − vmin)/(vmax − vmin). Then, the bottom basemap
B′(u, v) = cb(v)B(u, v), where B(u, v) is the basemap
function defined in Equation 1.

Floating Island Generation. After the top basemap and
bottom basemap are calculated, the floating island is ready to
be assembled from those elevation maps. The top heightmap
of the floating island is Htop(u, v) = αtop(βtopB(u, v) + (1−
βtop)H0(u, v)). As the bottom heightmap of the floating island
is beneath the sea level, therefore αbottom < 0. Then, we have
the bottom heightmap of the floating island as: Hbottom(u, v) =
αbottom(βbottomB

′(u, v)+(1−βbottom)H0(u, v)). After the final
generation of the top mesh and buttom mesh using these
heightmap equations, we add another mesh called middle mesh
to make up the intervals between these two meshes. Then, the
final floating island automatically generated with our approach.

V. EXPERIMENTAL RESULTS

In order to validate the effectiveness of our approach, we
have conducted a series of computational experiments. As
shown in Figure 4, we have collected six different digital
paintings of floating island design. Given these designs, we
run our algorithms to automatically generate the floating island
that are resembling the original input design. We have imple-
mented our algorithms on Unity 3D with the 2019 version.
The hardware configurations contain Intel Core i5 CPU, 32GB
DDR4 RAM, and NVIDIA GeForce GTX 1650 4GB GDDR6
Graphics Card. Figure 4 shows the results of the procedural
floating island generations with the setting as following: For
the top terrain mesh settings are: heightmap scale αtop = 0.2;
basemap scale βtop = 0.2. For the bottom terrain mesh
settings are: heightmap scale αbottom = 0.8; basemap scale
βbottom = −2.5. The terrain feature heightmap H0(u, v) is
generated with the standard canyon filters. Subfigures are
showing the top view and front view respectively for each
synthesized 3D floating island terrain.



(a) Stony mountain style for design 1. (b) Stony mountain style for design 2.

(c) Glaciers landscape style for design 1. (d) Glaciers landscape style for design 2.

(e) Volcanic landscape style for design 1. (f) Volcanic landscape style for design 2.

Fig. 5: Experimental results of changing terrain features and textures. In this figure, we present the visual effects when applying
different types of terrain features on the same digital painting input. The first column shows the synthesized floating islands on
the first digital painting input with different terrain features. While the second column shows the synthesized floating islands
on the second digital painting input with different terrain features. The first row shows the synthesized floating islands with
stony mountain-style features for the first design and the second design respectively. While the second row and the third row
show the synthesized floating islands with the glaciers landscape style and the volcanic landscape style respectively.

As we can see from Figure 4, generated floating islands
matching well with the user’s conceptual digital painting
designs. For example, in subfigure (b), we can see three
spherical blocks specified in the user’s original digital painting
design as plotted in the left-bottom corner where the blocks
on two sides are smaller than the center block. The same
effects appear in the result. Also, in order to consider the
foreshortening effects on the digital painting concept design
from an orthogonal view, we provide an automatic scaling step
to stretch the top image (green part) so that the 3D results are
zoomed-in along the z-axis of depth direction. By default, the
scaling factor is set to 1.5 and this effect is obvious in subfigure
(d). Users can also manually set up this scaling factor to adjust
the synthesized 3D outputs to satisfy their expectations.

Changing Terrain Features and Textures. Besides testing
our proposed interface with different user input, we have tested
the robustness of our approach on different types of terrain
features and terrain textures. As shown in Figure 5, with
the same terrain settings as claimed before, different terrain
features are added onto the generated floating islands. In this
experiment, we take two different digital paintings from users
as inputs. For each input, we applied three different types of
terrain features and textures, they are stony mountain style
features and textures, glaciers landscape style features, and
volcanic landscape style features respectively. As shown in the
results, our approach can not only generate realistic floating
islands according to users’ different digital paint designs but
also can be able to add different types of terrain features.



VI. CONCLUSIONS

In this paper, we present IslandPaint, a smart user interface
for digital painting-driven floating island design. In order to
let users efficiently design the 3D floating islands with simple
2D single-view conceptual digital paintings, we proposed a
novel approach to automatically extract the 3D information
hidden in the conceptual designs. We first propose a hypothesis
that the users’ paintings are focused on flat floating islands,
Then, we segmented the top shape and bottom shape using an
image segmentation algorithm. In the next steps, we extract the
polygon geometry from the top image and extract the height
information from the bottom image. Therefore, we can recon-
struct the floating islands whose top views are matching with
the top image correctly while the front views are matching
with the bottom image correctly. Then, after the procedural
modeling process proposed by us, 3D floating islands look like
the original 2D paintings will be automatically generated. As
shown in the experimental results, we validated our approach
through different user’s digital painting designs and the results
look promising. At the same time, we tested our interface on
different types of terrain features, both results are showing that
our approach can be compatible and extended with existing
terrain procedural modeling technologies very well.

However, there still are some limitations in our work. First,
our approach is based on the hypothesis that the user’s digital
paintings are merely referred to as those floating islands that
have flat top surfaces. As a matter of fact, there are lots
of floating island design works are referring to the bumping
terrains. Therefore, our approach will not be able to work
correctly on these scenarios. In order to solve this, it will rely
on proposing an optimization framework to extract the 3D
information from the 2D paintings by minimizing the costs
functions that are evaluating how well the reconstructed 3D
information matches with the perceived 2D information. This
is a challenging topic and is worthy to explore as future work.
On the other hand, our interface doesn’t allow users to add too
many details on the terrain surface. This limited the freedom
of degree on user’s artistic creations. However, by adding more
details of the design, such as wrinkles, the degree of the user’s
control over the floating island design process will improve
significantly. This is another challenging topic to try as the
follow-up of this research work.

According to the experimental demonstration of our pro-
posed interface presented in this paper, we believe that use
the interface of IslandPaint proposed by us, floating islands
design will become easier for digital art designers, digital
multimedia producers, digital movie makers, and digital game
authors in the near future. Also, we believe that our work
opens an interesting research topic on interactive procedural
floating island design and will attract more researchers to
further explore amazing academic studies along this direction
proposed by us and follow up with the technical approaches
presented in this paper.
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