
PM4VR: A Scriptable Parametric Modeling Interface for
Conceptual Architecture Design in VR

Wanwan Li
University of South Florida

Tampa, Florida, USA

Figure 1: This figure shows the results of interactive parametric modeling on conceptual architecture designs using PM4VR.
Users are able to use simple code (shown in the text editor) to program the conceptual architecture designs with a simplified
programming language called Java♭ which is developed by us. Through PM4VR, users can interactively tune the design
parameters using VR controllers in immersive VR environments. In this figure, the virtual urban environment is automatically
loaded through OpenStreetMap API which is matching with the real world located nearby the Zhujiang New City Tower,
Tian He Qu, Guang Zhou Shi, China. Through our integrated interface of PM4VR, users can create conceptual architecture
parametric designs with immersive interactive experiences to tune the parameters in a realistic virtual environment.

ABSTRACT
In this paper, we propose PM4VR, a novel scriptable parametric
modeling interface for the Unity3D game engine which can be
applied to VR-driven parametric modeling designs. By simplify-
ing prevailing advanced programming languages such as C# and
Java, we propose another programming language, named Java♭, to
simplify the grammar and lower the programmer’s learning curve.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VRCAI ’22, December 27–29, 2022, Guangzhou, China
© 2022 Association for Computing Machinery.
ACM ISBN 979-8-4007-0031-6/22/12. . . $15.00
https://doi.org/10.1145/3574131.3574442

By implementing a series of advanced parametric modeling tech-
niques, we integrate our Java♭ compiler virtual machine with those
functionalities which can facilitate interactive parametric model-
ing design process on the Unity3D game engine within immersive
SteamVR environments. More specifically, in this paper, we intro-
duce the Java♭ programming language, explain the implementation
details of Java♭ compiler virtual machine, and discuss the experi-
mental results of the interactive parametric modeling on conceptual
architecture designs using PM4VR. Besides, a Supplementary Ma-
terial with Java♭ programming examples is included.

CCS CONCEPTS
• Computing methodologies→ Shape modeling.

KEYWORDS
Parametric Modeling, Virtual Reality, Conceptual Architecture De-
sign, Programming Language, Compiler and Virtual Machine

https://orcid.org/0000-0002-9425-2633
https://doi.org/10.1145/3574131.3574442

VRCAI ’22, December 27–29, 2022, Guangzhou, China Wanwan Li

ACM Reference Format:
Wanwan Li. 2022. PM4VR: A Scriptable Parametric Modeling Interface
for Conceptual Architecture Design in VR. In The 18th ACM SIGGRAPH
International Conference on Virtual-Reality Continuum and its Applications
in Industry (VRCAI ’22), December 27–29, 2022, Guangzhou, China. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3574131.3574442

1 INTRODUCTION
With the rapid development of conceptual architectural design,
CAGD (Computer Aided Graphics Design) [Shivegowda et al. 2022]
has become an indispensable application tool for architects. Since
Robert McNeel & Association first released Rhinoceros 3D [Omid
and Golabchi 2020], a 3D development software with NURBS sur-
face parametric modeling [Stavric and Marina 2011] as its main
feature, such innovation has been revolutionary. First of all, it intro-
duces the parametric equation representation of NURBS surfaces as
an alternative to the traditional 3D modeling approaches which are
based on dragging and dropping NURBS control points. Secondly,
by writing the RhinoScript programs through the Kangaroo plug-
in [Asefi and Bahremandi-Tolou 2019], developers can efficiently
develop complex 3D surfaces by adjusting parameter settings. Since
then, script-based parametric modeling approaches have gain more
popularity within the conceptual architecture design industry.

However, due to the complex grammar of RhinoScript, its learn-
ing curve for beginners becomes extremely high. Sure enough,
such a problem was noticed by David Rutte, who developed a vi-
sual programming plug-in called Grasshopper 3D [Fink and Koenig
2019] through which designers can program easily by dragging
"battery"-like controls and connecting those controls with different
logic flows. In this way, developers only need to care about the
function of each control without requiring too many programming
skills. However, when reading and debugging a large-scale visual
program including hundreds of controls, understanding each con-
trol and the logical relationship between components becomes an
extremely complicated thing. Firstly, mastering the functions of a
large number of controls is actually not simpler than learning an
easy programming language; Secondly, reading the program logic
in a way of "batteries" and "circuits" is far less straightforward than
reading program code directly. Therefore, although Grasshopper
3D is a powerful tool, it does not simplify the programming either.

On the other hand, as Virtual Reality (VR) technologies are gain-
ing popularity among this generation, directly adjusting the para-
metric conceptual architecture designs in the virtual immersive
environment is more inspiring for creative design. Figure 2 shows
some existing works, which include Hawton et al. [Hawton et al.
2018], Coppens et al. [Coppens et al. 2019], Castelo et al. [Castelo-
Branco et al. 2019; Castelo-Branco and Leitão 2022], and Archimatix
Pro [Productions 2021], etc., that are building bridges between the
existing parametric modeling tools such as Grasshopper 3Dwith the
virtual immersive VR environments provided on the Unity 3D game
engine. For addressing the limitations in the existing parametric
modeling toolkit and emphasizing the advanced feature of VR, we
propose the PM4VR, an integrated and simplified design package
on the Unity 3D game engine, for facilitating the VR-driven concep-
tual architecture parametric modeling and designing experiences
of architects. The main contributions of our work include:

(a) [Hawton et al. 2018] (b) [Coppens et al. 2019]

(c) [Castelo-Branco and Leitão 2022] (d) Archimatix Pro [2021]

Figure 2: Some related works that connect existing paramet-
ric modeling tools with immersive virtual environments.

• Designing a new Java-like and object-oriented programming
language called Java♭ with simpler grammars that are spe-
cially proposed for efficient parametric modeling.

• Developing the Java♭ compiler using C language program-
ming, developing a virtual machine for Unity 3D Game En-
gine called JVM♭, and a novel assembly language instructions
set called ASM♭ which is executed on JVM♭.

• Developing the VR feature by connecting the JVM♭ with the
SteamVR plugin and test our proposed interactive parametric
modeling interface of PM4VR in virtual reality.

2 OVERVIEW
In this paper, we propose the PM4VR, a scriptable integrated design
toolkit on Unity 3D game engine, for facilitating the VR-driven
conceptual architecture parametric modeling and designing experi-
ences. More specifically, we simplify the programming by proposing
a novel programming language (called Java♭) with simple grammar
but powerful parametric modeling capabilities. After the designer
writes the Java♭ script for architecture designs, the Java♭ compiler
compiles the scripts and generates a set of specially designed as-
sembly language instructions (called ASM♭), we develop a Unity 3D
Game Engine-based virtual machine (called JVM♭). By executing the
ASM♭ instructions, the JVM♭ can exchange parametric modeling
information between the Unity3D Editor and the Java♭ script so as
to achieve the interactive parametric modeling feature on Unity3D
in a virtual reality environment through SteamVR plug-in. Java♭
language is an object-oriented programming language with the pro-
gramming style of Java. It avoids many complex syntax definations
and also include some new features such as 3D vector operations,
function operations, geometric transformation, etc. This language
has a lot of flexibility that RhinoScript language does not have, also,
it encapsulates many graphics modules with strong applicability,
such as curve and surface modeling based on parametric equations
and connection with Unity3D assets. Therefore, the Java♭ language
will potential have a valuable impact among existing parametric
modeling interfaces for conceptual architecture design in VR.

https://doi.org/10.1145/3574131.3574442

PM4VR: A Scriptable Parametric Modeling Interface for Conceptual Architecture Design in VR VRCAI ’22, December 27–29, 2022, Guangzhou, China

Figure 3: Overview of our approach.

3 TECHNICAL APPROACH
3.1 Java♭ Compiler
Java♭ language is a 3D programming language designed by us. As
shown in Figure3(a), the overall grammar of Java♭ is similar to Java
language but is significantly simplified. For more details about Java♭
language programming, please refer to the Supplementary Material
(Section 1). The implementation of the Java♭ compiler is using C
language and is based on three main parts including the definition
of language grammar structures, the design of a lexical analyzer,
and the implementation of an object-oriented syntax translator
based on a top-down recursive descent semantic analysis algorithm.
Besides, there are techniques involved in symbol or identifier table
management, runtime data storage organization, and information
exchange with external resources such as the console, file system,
and the Unity3D interface. Java♭’s lexical analyzer implements
those functionalities including scanning the Java♭ script line by line
from left to right, translating valid words into keywords or iden-
tifiers, creating constant data segment tables (including integers,
doubles, strings, and vectors), etc. The Java♭’s syntax translator
can identify the semantics of the grammatical components, obtain
the attributes of identifiers, semantic checking, static binding of
method pointers, calculate the relative addresses of instructions,
bindings static variables, binding relative addresses of identifier
tables, etc. After being compiled through the Java♭ compiler, the
Java♭ script (*.javab) can be translated into the ASM♭ instructions
(*.asmb) and written into binary class files (*.classb) called Class♭.
Java♭ compiler’s main components are shown in Figure3(b).

3.2 ASM♭ Language
Assembly Language Flat (ASM♭) is a high-level machine language
that we have specially designed for the Java♭ Virtual Machine
(JVM♭). JVM♭ can interpret and execute ASM♭ instructions to im-
plement the stand I/O, human-computer interaction in VR, and
parametric modeling on Unity3D. As shown in Figure3(c), there
are many similarities between ASM♭ language and standard as-
sembly languages, e.g., both of them contain the data segment and
code segment. But the ASM♭ instruction set is more advanced than

the standard ASM instruction set because of ASM♭ instructions’
flexibility. For example, ASM♭ can directly store integers, doubles,
and strings in the data segment. But in the standard ASM language,
only byte/word data can be stored. Moreover, the standard ASM lan-
guage only supports fixed-length instructions, but ASM♭ supports
variable-length instructions such as ADD, MUL, AND, SWITCH,
etc. Therefore, the multiple instructions in standard ASM language
can be completed by one instruction in ASM♭, which improves the
execution efficiency. For more details about ASM♭ language, please
refer to the Supplementary Material (Section 2).

3.3 Java♭ Virtual Machine
Java♭ Virtual Machine (JVM♭) is a software developed by us in
C language. JVM♭is similar to Java Virtual Machine (JVM). Typ-
ically, virtual machines can be used for separating the software
from hardware. Advantages of virtual machines include high exe-
cution efficiency, cross-platform, easy for software development,
etc. Given this observation, JVM♭ has a unique instruction set:
ASM♭(Assembly Language Flat), a powerful variable-length instruc-
tion set, which makes JVM♭’s execution efficiency very high. At the
same time, the ASM♭ instruction set enables the user to generate
3D graphics on Unity3D regardless of the execution platform. The
JVM♭’s execution process includes: loading the class file, allocating
memory, loading the data segment and code segment, initializing
the instruction pointer, and executing the instructions one by one
until the instruction pointer points to the instruction of EXIT. In
the end, exiting the whole virtual machine and finished running.
The main components of the JVM♭are shown in Figure3(d).

3.4 Unity♭ Script and PM4VR
The main function of the JVM♭ is to provide an efficient program-
ming interface on Unity Editor (as shown in Figure3(e)), thus be-
coming a practical programming platform for parametric modeling
in VR (which is called PM4VR in our work). Once users import
our PM4VR interface package into Unity Editor, four C# script files
will be imported including UnityUtils.cs,MeshGeometry.cs, Jav-
abCompiler.cs, and JavabScriptBehaviour.cs. Among those C#

VRCAI ’22, December 27–29, 2022, Guangzhou, China Wanwan Li

Figure 4: Example of PM4VR’s execution process.

scripts, JavabCompiler.cs is used to connect JVM♭ with Unity Ed-
itor through temporary files called Unity♭ Scripts (*.unityb). More
specifically, every time when user wants to reload updated Java♭
scripts or wants to tune the parametric design through the range
controls in Unity Editor or SteamVR, Unity♭ scripts that contain
the parameter settings will be written automatically. Then, JVM♭

can read those parameters from Unity♭ Script and output 3D geo-
metrical calculations results into Unity♭ Script again. In the end,
JavabScriptBehavior.cs will load those results from Unity♭ Script
into Unity Editor or VR environments in real-time for users’ inter-
actions on parametric molding in VR. Figure4 shows an example of
using PM4VR to add a wooden sphere with a radius specified by a
range control named "s" whose current value is set to 0.5. For more
detailed explanation for this running example, please refer to the
Supplementary Material (Section 3).

3.5 Java♭ Parametric Modeling
In our PM4VR package,MeshGeometry.cs implements some im-
portant parametric modeling algorithms discussed in this section.

Figure 5: Curve

Curve. According to the curve’s
parametric equation, any 3D
curve can be defined as the trajec-
tory of a moving 3D point or vec-
tor with is changing along with
the time parameter 𝑡 such that
f (𝑡) = ⟨𝑥 (𝑡), 𝑦 (𝑡), 𝑧 (𝑡)⟩, where
f (𝑡) ∈ R3, 𝑡 ∈ [𝑡0, 𝑡1], 𝑡0 < 𝑡1 ∈ R.
Given this representation, any 3D
curve can be mapped from a 1D parametric space into the 3D space.
However, only a 3D curve can not present a meshed surface in
parametric modeling. Therefore, in our proposed PM4VR, one ad-
ditional 1D scalar parametric equation 𝑔(𝑡) where 𝑡 ∈ [𝑡 ′0, 𝑡

′
1] and

𝑡 ′0 < 𝑡 ′1 ∈ R is considered in our approach to represent the radius
of the moving points at time 𝑡 . By combining point position of f (𝑡)
and point radius 𝑔(𝑡), user can construct the pipe-like 3D shape
using the function call addPipe (f (𝑡), 𝑡0 : 𝑡1, g(𝑡), 𝑡 ′0 : 𝑡

′
1) in the Java

♭

script. Figure 5 shows an example of pipe geometry generated in
Unity with Java♭ script, for more details of the equation described
in the script, please refer to Supplementary Material (Section 3).

Figure 6: Surface

Surface. Surface’s parametric
equation can be defined through
two parameters 𝑢 and 𝑣 as
f (𝑢, 𝑣) = ⟨𝑥 (𝑢, 𝑣), 𝑦 (𝑢, 𝑣), 𝑧 (𝑢, 𝑣)⟩
where 𝑢 ∈ [𝑢0, 𝑢1], 𝑣 ∈ [𝑣0, 𝑣1],
𝑢0 < 𝑢1 ∈ R and 𝑣0 < 𝑣1 ∈ R.
Through this representation, any
3D surface can be mapped from
a 2D parametric space. In the Java♭ script, user can construct the
3D surface using function call addSurface (f (𝑢, 𝑣), 𝑢0 : 𝑢1, 𝑣0 :
𝑣1). Figure 6 shows an example of Klein surface generated with
Java♭ script, for more details of the equation described in the script,
please refer to the experiment result of Building 1 in Figure 13, or,
refer to Supplementary Material (Section 3). Indeed, Klein surface
is very famous among parametric modeling designers and it has
been widely used in conceptual architecture designs. Besides, using
the same Java♭ function call, 1D scalar field equation ℎ(𝑢, 𝑣) ∈ R is
also supported by our interface though an autoconversion from 1D
scalar function ℎ(𝑢, 𝑣) into 3D vector f (𝑢, 𝑣) =< 𝑢,ℎ(𝑢, 𝑣), 𝑣 >. This
function type can be employed to represent the terrain’s heightmap.

Figure 7: Prefab Surface

Prefab Surface. Given arbitrary
parametric equation of surface
f (𝑢, 𝑣) = ⟨𝑥 (𝑢, 𝑣), 𝑦 (𝑢, 𝑣), 𝑧 (𝑢, 𝑣)⟩
and a pre-defined 3D prefab in
Unity3D Editor or using Java♭
function of addPrefab ("prefab
name", ⟨ scale ⟩), we provide an-
other useful Java♭ function called
addPrefabSurface ("prefab name", ⟨ scale ⟩, f(𝑢, 𝑣), 𝑢0 : 𝑢1, 𝑣0 : 𝑣1).
This function call automatically adds and places prefab onto every
vertex in the surface mesh and rotates such prefab by the trans-
formation such that the prefab’s local space coordinates ⟨x̂, ŷ, ẑ⟩
are aligned with the surface’s tangent - normal - bitangent space
⟨t̂, n̂, b̂⟩ coordinates such that ⟨x̂, ŷ, ẑ⟩ → ⟨t̂, n̂, b̂⟩. Figure 7 shows
an example of prefab surface geometry generated in Unity with
Java♭ script, in this case, the prefab is a manually created 3D model
called "AxisIcon". For more details of the equation described in the
script, please refer to Supplementary Material (Section 3).

Figure 8: Wire Surface

Wire Surface. Wireframes are
commonly used in conceptual ar-
chitectural design. Typically, wire
surface is an important skill for
architecture parametric modeling.
To provide such technical sup-
port in PM4VR, we design a Java♭
function called addWireSurface
(f(𝑢, 𝑣), 𝑢0 : 𝑢1, 𝑣0 : 𝑣1, radius). Af-
ter specifying the radius of the wires and the function f(𝑢, 𝑣), the
wire surface is automatically generated through this function call
by placing line pipes whose endpoints align with every two adja-
cent vertices in the surface mesh. Figure 8 shows an example of
wire surface geometry generated in Unity with Java♭ script, for
more details of the equation described in the script, please refer to
Supplementary Material (Section 3).

PM4VR: A Scriptable Parametric Modeling Interface for Conceptual Architecture Design in VR VRCAI ’22, December 27–29, 2022, Guangzhou, China

Figure 9: Crust Surface

Crust Surface. In most of cases,
surface function ℎ(𝑢, 𝑣) has no
volume. However, the crust does.
By extruding any surface along
its normal direction at a specific
distance, crust geometry can be
generated from surface geome-
try. Therefore, in order to con-
vert the arbitrary surface into crust, a Java♭ function called
addCrust(f(𝑢, 𝑣), 𝑢0 : 𝑢1, 𝑣0 : 𝑣1, 𝑔(𝑢, 𝑣), 𝑢 ′0 : 𝑢 ′1, 𝑣

′
0 : 𝑣 ′1, 𝑞 (𝑢, 𝑣),

𝑢 ′′0 : 𝑢 ′′1 , 𝑣
′′
0 : 𝑣 ′′1) is developed by us. Mathematically, we construct

two surfaces including f+ (𝑢, 𝑣) as the outer side surface and f− (𝑢, 𝑣)
as the inner side surface, then a crust geometry is generated by
f+ (𝑢, 𝑣) and f− (𝑢, 𝑣). Given 𝑔(𝑢, 𝑣) and 𝑞 (𝑢, 𝑣) specifying the thick-
ness of the outer side and the inner side, mathematically, we have
f+/− (𝑢, 𝑣) defined through the following equations:{

f+ (𝑢, 𝑣) = f (𝑢, 𝑣) + n(𝑢, 𝑣)𝑔(𝑢, 𝑣)
f− (𝑢, 𝑣) = f (𝑢, 𝑣) − n(𝑢, 𝑣)𝑞(𝑢, 𝑣)

(1)

where the normal of surface n(𝑢, 𝑣) is calculated as:

n(𝑢, 𝑣) = f𝑢 (𝑢, 𝑣) × f𝑢 (𝑢, 𝑣)��f𝑢 (𝑢, 𝑣) × f𝑢 (𝑢, 𝑣)
�� (2)

Figure 8 shows an example of wire surface geometry generated in
Unity with Java♭ script, for more details of the equation described
in the script, please refer to Supplementary Material (Section 3).

Figure 10: Coons Surface

Coons Surface. We provide an-
other functionality to generate
surfaces from four borders which
are defined with four curve equa-
tions which are p

𝑈 0 (𝑢), p𝑈 1 (𝑢),
p0𝑉 (𝑣), and p0𝑉 (𝑣). According to
the definition of Coons Surface
which is calculated by the linear
interpolation between two opposite borders subtracted by the
bilinear interpolation between four borders. Through function
addCoonsSurface(p

𝑈 0 (𝑢), 𝑢0 : 𝑢1, p𝑈 1 (𝑢), 𝑢 ′0 : 𝑢
′
1, p0𝑉 (𝑣), 𝑣0 : 𝑣1,

p1𝑉 (𝑣), 𝑣 ′0 : 𝑣
′
1) in the Java♭ developed by us, Coons surface can be

automatically constructed through the following equation:

f (𝑢, 𝑣) =
[
1 − 𝑢 𝑢

] [p0𝑉 (𝑣)
p1𝑉 (𝑣)

]
+
[
p
𝑈 0 (𝑢) p

𝑈 1 (𝑢)
] [1 − 𝑣

𝑣

]
−
[
1 − 𝑢 𝑢

] [p00 p01
p10 p11

] [
1 − 𝑣

𝑣

] (3)

where p00 , p01 , p10 , p11 are calculated through the intersections
between every two pairs of adjacent border curves. Figure 10 shows
an example of a Coons surface geometry generated in Unity with
Java♭ script, for more details of the equation described in the script,
please refer to Supplementary Material (Section 3). Due to the
simplicity of such a definition, Coons surface is widely used in
architectural design and CAD designs. Especially, this functionality
is able to help designers to build 3D surfaces directly from the curve
equations that define the border shapes of arbitrary surface patches.

Figure 11: Isosurface

Isosurface. In geometric model-
ing, any isosurface can be defined
from a 3D scalar field 𝑓 (𝑥,𝑦, 𝑧) ∈
R through an isovalue 𝐶 , where
𝑥 ∈ [𝑥0, 𝑥1], 𝑦 ∈ [𝑦0, 𝑦1], 𝑧 ∈
[𝑧0, 𝑧1], 𝑥0 < 𝑥1 ∈ R and 𝑦0 <

𝑦1 ∈ R, and 𝑧0, 𝑧1 ∈ R. Mathe-
matically, the isosurface is con-
structed from those points satisfying the equation: 𝑓 (𝑥,𝑦, 𝑧) = 𝐶 .
In Java♭ script, user can define any isosurface through function
call addIsoSurface (𝑓 (𝑥,𝑦, 𝑧) == 𝐶 , 𝑥0 : 𝑥1, 𝑦0 : 𝑦1, 𝑧0 : 𝑧1). In our
proposed interface, we automatically construct the surface mesh
through the marching cube algorithm. Figure 11 shows an example
of isosurface geometry generated in Unity with Java♭ script, In this
case, a hyperboloid isosurface (a quadric surface) is constructed as
a Unity Prefab at the beginning. After then, it is loaded nine times
along a circle. For more details of the equation described in the
script, please refer to Supplementary Material (Section 3).

Figure 12: Tilt Prefab

Prefab Transform. With our
proposed PM4VR interface, the
user can load a Unity prefab re-
peatedly through a series of trans-
formations defined through three
different vector parametric equa-
tions which are translation equa-
tion f (𝑡), rotation equation q(𝑡),
and scale equation g(𝑡). After call-
ing the Java♭ function which is
addPrefabTransform ("prefab name", f (𝑡), 𝑡0 : 𝑡1, q(𝑡), 𝑡 ′0 : 𝑡

′
1, g(𝑡),

𝑡 ′′0 : 𝑡 ′′1), prefab is loaded according to the position specified in f (𝑡),
the rotation Euler angles specified in q(𝑡) and the scale specified
in g(𝑡). This function is very helpful for parametric architecture
designs, especially for those tilted building structures design. Fig-
ure 12 shows an example of the transforming prefab geometry
generated in Unity with Java♭ script, in this case, the prefab is a
manually created 3D model called "BoxFrame". According to this
design, as the "BoxFrame" is moving downwards, it zooms out and
at the same time and rotates along the y-axis. For more details of the
equation described in the script, please refer to Supplementary Ma-
terial (Section 3). A similar design is also shown in the experimental
result of Building 11 in Figure 14.

4 EXPERIMENT RESULTS
We conducted a series of experiments to validate the functionalities
of our proposed PM4VR interface on Java♭ parametric modeling
for conceptual architectural design. Given fifteen different para-
metric equations as design plans, we program those conceptual
designs using Java♭ scripts and execute those scripts in Unity3D
Editor. Experiment results are shown in Figure 13-15, the virtual ur-
ban environment is automatically loaded through OpenStreetMap
(OSM) API which is matching with the real world located nearby
the Zhujiang New City Tower, Tian He Qu, Guang Zhou Shi, China.
According to the original map loaded from OSMAPI, there is plenty
of grass or empty space for placing those conceptual architecture
designs. Fifteen architectural designs are labeled from Building 1

VRCAI ’22, December 27–29, 2022, Guangzhou, China Wanwan Li

Figure 13: Experiment Results (Part 1). This figure shows 1st to 8th architecture designs using PM4VR Java♭ programming.

to Building 15 whose labels can be found correspondingly in those
subfigures. Each subfigure shows the Java♭ script and its corre-
sponding conceptual architecture design result rendered with a
closer view in the virtual environment.

Building 1 is generated using a standard Klein surface parametric
equation with a white grid texture. Two parameters for Building 1
include 𝑅 and 𝑟 used to adjust the radius and height of this building
respectively.𝑅 and 𝑟 are acquired through two range controls named

"R" and "r" respectively. The white grid texture is defined in a
material whose filename is "0.mat". Building 2 is generated using a
2D Gaussian equation extruded with sine equations. Its appearance
uses a dark material texture which is defined in a material whose
filename is "12.mat". Building 3 is generated using a 3D oval sphere
equation extruded by a sine wave equation as a "bumpy" oval crust.
Its appearance uses a white marble texture which is defined in a
material whose filename is "9.mat". Building 4 is generated using

PM4VR: A Scriptable Parametric Modeling Interface for Conceptual Architecture Design in VR VRCAI ’22, December 27–29, 2022, Guangzhou, China

Figure 14: Experiment Results (Part 2). This figure shows 9th to 14th architecture designs using PM4VR Java♭ programming.

an extruded spiral shape crust that looks like a deformed version of
the "double helix". At the bottom of the design, a flat box is added
as a base of this building. Its appearance uses a white stone texture
which is defined in a material whose filename is "2.mat". Building 5
is generated using a crust extruded from a 2D sine equation that
looks like a waved roof. Its appearance uses a gray texture which
is defined in a material whose filename is "3.mat". Building 6 is
generated using aMöbius ring surface equation. Its appearance uses

a shining gray metallic texture which is defined in a material whose
filename is "13.mat". Building 7 is generated as a wired surface using
the spiral shell equation. Its appearance uses the same material as
Building 6. Building 8 is generated using a Scotch Bonnet shell
surface equation. Its appearance uses a gradient gray texture which
is defined in a material whose filename is "14.mat". Building 9 is
generated using a nested sphere surface equation along with a flat
sphere as a base. Its appearance uses same material as Building 5.

VRCAI ’22, December 27–29, 2022, Guangzhou, China Wanwan Li

Figure 15: Experiment Results (Part 3). This figure shows the 15th architecture design using PM4VR Java♭ programming.

Building 10 is generated by placing the prefabs called "AxisIcon"
along a sphere surface equation. According to the step settings for
𝑢 = 10 and 𝑣 = 20, prefabs are distributed denser along latitude
than longitude, and two parameters 𝑅 and 𝑟 are used for adjusting
the sphere radius and the Axis Icon size respectively. Building 11
is generated using a tilt structure using the "BoxFrame" prefab. As
tiling the prefab up, it is rotating along the y-axis while zooming
out. Two parameters of 𝑟 and 𝑘 are used for adjusting the building’s
height and tilting degree respectively. Building 12 is generated
using a pipe curve structure defined from a progressing figure "8"
track. Its appearance uses a bright white texture which is defined in
a material whose filename is "11.mat". Building 13 and Building 14
are generated from the isosurface of hyperboloid equations. Their
appearance uses the same material as Building 12. Building 15 is
generated using an "F" function that constructs a surface shape
that looks like a "waterfall" and saves it as a prefab called "Group1"
though Java♭ function call newPrefab("prefab name"). In main
function, "Group1" is loaded ten times while rotating along y-axis.

5 USER STUDY
We conducted a preliminary user study to ask a user to test our
PM4VR interface by tuning the architectural parametric design
within a virtual environment. Figure 16 shows the photo capture
during the study where the left part shows the user’s view captured
in VR and the right part shows the user who is interacting with
the range control using a VR controller. As shown in the result,
we develop this VR range control identical to the range control in
Unity Editor. Real-time update on architecture design is rendered in
Oculus Quest 2 VR headset while the user tunes parametric value
via VR range control, this results in an immersive design experience.

6 CONCLUSION
In this paper, we propose a novel easy-to-write parametric mod-
eling language Java♭ along with a VR interactive interface called
PM4VR that connects Java♭ parametric modeling with virtual real-
ity. By using PM4VR which implements some parametric modeling
algorithms commonly used in architecture concept design, the user
can write simple Java♭ script to create and update the conceptual
architecture design in an immersive virtual environment through

Figure 16: User is tuning architecture parameters via PM4VR.

an Oculus Quest 2 VR headset and VR controllers. In future work,
we will conduct larger-scale user studies to validate our proposed
PM4VR platform from more aspects of analysis including the Java♭
coding efficiency comparison test, user interaction test, and large-
scale architecture conceptual designs application test, etc.

REFERENCES
Maziar Asefi and Mahnaz Bahremandi-Tolou. 2019. Design challenges of reciprocal

frame structures in architecture. Journal of building Engineering 26 (2019), 100867.
Renata Castelo-Branco et al. 2019. Immersive Algorithmic Design-Live Coding in

Virtual Reality. (2019).
Renata Castelo-Branco and António Leitão. 2022. Algorithmic Design in Virtual Reality.

Architecture 2, 1 (2022), 31–52.
Adrien Coppens, Tom Mens, and Mohamed-Anis Gallas. 2019. Parametric modelling

within immersive environments: building a bridge between existing tools and
virtual reality headsets. arXiv preprint arXiv:1906.05532 (2019).

Theresa Fink and Reinhard Koenig. 2019. Integrated Parametric Urban Design in
Grasshopper/Rhinoceros 3D-Demonstrated on a Master Plan in Vienna. (2019).

Dominic Hawton, Ben Cooper-Wooley, Jorke Odolphi, Ben Doherty, Alessandra Fabbri,
Nicole Gardner, and M Hank Haeusler. 2018. Shared immersive environments
for parametric model manipulation-evaluating a workflow for parametric model
manipulation from within immersive virtual environments. (2018).

Hanie Omid and Mahmood Golabchi. 2020. Survey of parametric optimization plugins
in Rhinoceros used in contemporary architectural design. In Proceedings of the
Fourth International Conference onModern Research in Civil Engineering, Architecture,
Urban Management and Environment, Karaj, Iran, Vol. 17.

Roaring Tide Productions. 2021. Unity Asset Store: ArchimatixPro.
Monika Dyavenahalli Shivegowda, Pawinee Boonyasopon, Sanjay Mavinkere Ran-

gappa, and Suchart Siengchin. 2022. A review on computer-aided design and
manufacturing processes in design and architecture. Archives of Computational
Methods in Engineering (2022), 1–8.

Milena Stavric andOgnenMarina. 2011. Parametricmodeling for advanced architecture.
International journal of applied mathematics and informatics 5, 1 (2011), 9–16.

	Abstract
	1 Introduction
	2 Overview
	3 Technical Approach
	3.1 Java Compiler
	3.2 ASM Language
	3.3 Java Virtual Machine
	3.4 Unity Script and PM4VR
	3.5 Java Parametric Modeling

	4 Experiment Results
	5 User Study
	6 Conclusion
	References

