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Abstract. Recently, as many deep learning models are emerging, deep
learning has achieved great success in the field of artificial intelligence(AI).
Especially, the Generative adversarial networks (GANs) based on zero-
sum game theory has become a new research hot spot in the field of
deep learning. The significance of the GAN model is that it can generate
realistic data through unsupervised learning. Based on the conceptual
and theoretical framework of the generative adversarial network, GANs
models and their application result in tremendous success among differ-
ent areas, especially in image synthesis and editing. This paper visualizes
the data structures of various kinds of GANs models in 3D and discusses
the variational GAN models with respect to their improvements in the
applications. As the GANs have superior learning ability, strong plastic-
ity, great potential for improvement, and a wide application range, this
paper prospects the possible applications of the GANs in the near future.

1 Introduction

Generative adversarial networks (GANs) have become a hot research direction
in the field of artificial intelligence(AI). The basic idea of GANs is derived from
the two-person zero-sum game in game theory. It consists of two different neu-
ral networks: a generator and a discriminator. Typically, it is trained by means
of adversarial unsupervised learning. The purpose of GAN is to estimate the
potential distribution of data samples and generate new data samples. In the
fields of image processing and visual computing, speech and natural language
processing, information security, chess games, etc, GANs have been widely stud-
ied and got tremendous success in different areas. This paper firstly introduces
what is GAN, illustrate its structure with 3D visualizations, and discusses the
advantages and disadvantages of the original GAN model. Subsequently, this
paper introduces some derivative models of GANs, their new features, and their
improvements compared with the original model. Finally, this paper summarizes
the application fields of GANs, the performance of existing models, some repre-
sentative works of GAN in image synthesis and editing area, and prospect the
possible applications and extensions of GANs in the near future.

1.1 Introduction to Generative Adversarial Networks(GANs)

Generative adversarial networks (GAN) is a generative model originally proposed
by [6]. GAN is one kind of structured learning, it is inspired by the two-person
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zero-sum game in game theory (i.e. the sum of two-person interests is zero, and
the gain of one side is the loss of the other side). Generally, the GAN system
consists of a generator and a discriminator(See Figure 1 ). The generator captures
the potential distribution of real data samples and generates new data samples,
namely, fake data. The discriminator is a classifier to distinguish whether the
input is real data or fake data.

Fig. 1. The structure of GAN.

As shown in the Figure 1, the task
for the generator G is to train a neural
network that is able to convert arbi-
trary randomly distributed noise, typ-
ically called as a latent vector Z, into
a synthesized fake data G(Z), and try
to make the fake data approach real
data x, that is, the training data, as
much as possible. At the same time, the discriminator is trained simultaneously
as a classifier. Ideally, the data generated by the generator is classified as fake
data while the data from the training set as the real data. Therefore, the dis-
criminator is trained to be good at deciding whether the data is real or fake.

In the beginning, the generator generates fake data randomly, therefore, it
is easy for the discriminator to identify the fake data. While the generator is
optimizing and improving, more and more fake data looks like real data, until
the discriminator can’t tell which one is real and which one is fake. That means,
in the end, the generator can generate realistic data being able to ”fool” the
discriminator. Therefore, the optimization is done through a min-max loss func-
tion, that the ”worse” performance of the discriminator results in the ”best”
performance of the generator. The loss function for discriminator LD(D,G) is
defined as:

min
G

max
D

LD(D,G) = log D(x)|
x∼data + log(1−D(G(z))|z∼noise (1)

where data x is from the real data distribution while latent vector z is from
the random distribution (noise). The discriminator D wants to maximize the
classification between the distribution from real data x ∼ data and the one from
the fake data x ∼ G(z). After the optimizations, we hope that D(x) increases
which means the discriminator can identify real data more accurately. That
is why we maximize D. At the same time, the discriminator hopes D(G(z))
decreases, as it wants to identify the fake data more accurately. Therefore, we
minimize G. On the other side, as a generator G, we hope that D(G(z)) increases
which means the fake data G(Z) looks like real data after the optimizations.
Therefore, the goal of the generator is to maximize the loss function for generator
LG(D,G):

max
G

LG(D,G) = log(D(G(z))|z∼noise (2)

where similarly, z is a latent vector from a random distribution (noise).
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Generator and discriminator can be implemented through deep neural net-
works which are proved to be robust enough to achieve the goals through a series
of experiments. As the trained model is able to generate fake data that conform
to the sample distribution of real data without any prior knowledge, therefore,
generative models take an important role in unsupervised deep learning to cap-
ture the high-order correlation of data without target class label information.
By learning the semantic features of the real data, the GAN model can estimate
the distribution of training data and generate new data similar to training data.

1.2 Advantages and Disadvantages of Original GAN

Before the appearance of the original GAN model, there are some existing un-
supervised learning-based generative models proved to be efficient for image
synthesis. For example, Autoencoder (AE) proposed by [9] is able to convert an
input image into a code layer through a neural network (Encoder) and convert
such code layer through another neural network (Decoder) back to an image as
similar as possible to the original input. During the training process, both en-
coder and decoder are trained simultaneous and the difference between the input
images and the decoded images are backpropagated to the optimizer as the loss
function to be minimized. AE and its variational version called Variational Auto-
Encoder(VAE)[11] have been successfully applied to image reconstruction and
content-based image retrieval[12]. AE overcomes the traditional bottleneck of
pixel-based image retrieval approaches by directly comparing the code gener-
ated from the encoder instead of comparing the images pixel-by-pixel. Through
this approach, AE is able to catch the semantic features of the retrieved images
while pixel-by-pixel-based approaches cannot. Another application of AE is im-
age denoising [25]. Before sending the original high-quality input image to the
AE, the input image is preprocessed by adding white noises. Then train the AE
to generate images as close to the original high-quality input images as possible.
Through such a training process, AE is able to reconstruct high-quality im-
ages from low-quality noised images input. As another representative generative
model, PixeIRNN[21] trains the neural network by estimating the conditional
distribution of each individual pixel in a given adjacent pixel (left or upper). In
the PixeIRNN model, the input of the current pixel and its adjacent previous
pixel are both sent into the recurrent neural network as a sequence, the previous
pixel is the condition of the current pixel input. Through such a mechanism,
the PixeIRNN is able to predict another part of an image from one part of the
image. Therefore, PixeIRNN is proved to be a powerful tool to deal with image
completion problems.

Although the existing generative models (such as AE, VAE, etc.) are able to
generate new images by itself, the output images are seriously restricted to the
training dataset as they are trying to mimic the input image from the training
set. Therefore, the synthesized data are very similar to the original input from
the existing dataset, and sometimes, such models even directly retrieve images
from the dataset. On the other side, PixeIRNN is trying to complete the images
without considering the global image semantics and trying to combine different
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images from different catalogs as new images that are semantically meaningless.
For example, a car image is completed with a cat face. Therefore, a more intelli-
gent generate model needs to have two advantages: 1) the generated images are
semantically meaningful and can be identified as realistic images. 2) the gener-
ated images are not retrieved from the dataset and not too similar to the given
training samples. With such two advantages, the original GAN model made it-
self a breakthrough in the state-of-art of machine learning. On one hand, as the
GAN has a discriminator to identify the image as real or fake, therefore, if well-
trained, GAN is theoretically able to synthesize realistic images, this explains
the first advantage. On the other hand, as the generator in the GAN has no
input directly from the dataset, therefore, the generator doesn’t know how does
the realistic data look like and there is no chance for the generator to generate
new realistic images by copying the existing images, this explains the second
advantage.

However, the original GAN model, inspired by the Nash equilibrium in game
theory, still has some inevitable disadvantages. For example, there is no explicit
function to evaluate how good the current status of the GAN is. Typically, loss
functions can be used to evaluate whether the current neural network is well-
trained. If the loss function is close to zero, then the neural network looks ”good”
enough. But in the original GAN model, the generator hopes to maximize the
discriminator’s loss function, which means it hopes to fail the discriminator by
”fooling” it ”smartly”. But on the other hand, the discriminator wants to be good
at punishing the generator by minimizing its own loss function while maximizing
the generator’s loss function. Only in that way, the discriminator can be trained
to identify the fake data well. Therefore, as a consequence, the optimization will
not be guaranteed to converge as their loss functions are adversarial. Also, it is
not guaranteed whether the discriminator or the generator is over-trained and it
is very hard to be balanced. In the end, there will be either harmonious consis-
tency between discriminator and generator or there is one side over-performed
than another side. For example, when the generator is trying to ”fool” the dis-
criminator in some ”tricky” ways such as only generate some specific images
that can be identified as real images. In that case, the discriminator is not well-
trained and the generator will not be able to generate realistic images diversely.
For solving such instability, oscillations and divergences issues that potentially
exist during the training process of the original GAN model, some variations of
the GAN models change the original JS-divergence[4] into other types of diver-
gence such as the f-divergence in the f-GAN[19] or change the distance measure
function into Wasserstein distance in the WGAN[1].

2 Variations of Generative Adversarial Networks

The Generative Adversarial Networks (GANs) was proposed in 2014 and has
achieved great influence on the machine learning community. However, the origi-
nal GAN model is unpractical for most of the challenging real-world tasks. There-
fore, different variations of GANs models were proposed. For example, Condi-
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tional Generative Adversarial Networks (CGAN) [18], Deep Convolutional Gen-
erative Adversarial Networks (DCGAN)[24], Information Maximization Genera-
tive Adversarial Networks (InfoGAN)[2], Wasserstein Distance-based Generative
Adversarial Network (WGAN)[1], etc. Most of these GAN models are milestones
that push the original GAN model a great step forward as a powerful tool to
solve the real-world problem. In this section, some milestones of the variations
of the GAN models will be introduced.

2.1 DCGAN

DCGAN, short for deep convolutional GAN, firstly proposed by [24], is a mile-
stone in the development of improved GANs model. It combines CNN in su-
pervised learning and the GAN in unsupervised learning, which is robust and
convenient for engineering implementation (See Figure 2 ). In order to enhance
the original GAN model, the DCGAN model removes the fully connected hidden
layers to construct a deeper neural network. Details of the implementation such
as scale the synthesized image with the Tanh function, add batch normalization
layer, all parameters initialization is randomly obtained from the normal distri-
bution, add the ReLU activation function in the generator, and add the Leaky
ReLU activation function in the discriminator, etc. Besides, DCGAN used Adam
optimizer with a learning rate = 0.0002.

Fig. 2. The structure of DCGAN.

The contributions of the DCGAN model include (1) Batch normalization
(BN): BN is used both in the generator and the discriminator to alleviate the
training collapse problem and effectively avoids oscillation and instability of the
model. (2) The output layer of the generator uses the Tanh activation function,
which is appropriate for the adam optimizer and results in more satisfying re-
sults[22]. (3) Replacing the pooling layer with stride convolutional networks in
discriminator and with fractional-stride convolutions in the generator, which is a
more suitable sampling kernel function for unsupervised learning. Because of the
improved training stability of the DCGAN model, it has been widely accepted
and used for academic purposes.
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2.2 WGAN

Although DCGAN tries to use multi-layer CNN to solve the problem of training
collapse in engineering, theoretically, instability of training the original GAN
model still exists. As the original GAN model plays a min-max game, which
wants the discriminator to separate the real data from fake data as much as pos-
sible. However, during the training, if the discriminator is over-trained and very
”alert” to the fake data, even the fake data are getting more and more real, it will
still be ”punished” as fake data. Therefore, the gradient towards moving to real
will be unstable so that there is no suitable fitting function for fast convergence
of loss function, in the end, the fitting process in the training process is shaking
seriously with large gradients and not promised to be converging[20]. As a great
step in improving the original GAN model, WGAN, short for Wasserstein GAN,
propose by [1], devised a Wasserstein distance-based optimization approach to
theoretically solve such problem.

Wasserstein distance, also known as earth mover distance, between two dis-
tributions, is defined by a metric measured by the minimum steps left for moving
one distribution towards another. However, accurate calculation of the Wasser-
stein distance requires an optimizations approach which increases the compu-
tational time complexity of problem-solving. Therefore, according to the proof
that if the derivatives of the discriminators D are smoother enough through ap-
proximating a Lipschitz function, it is equivalent to solve a Wasserstein distance
as the measure of two distributions. Therefore, in the WGAN model, the loss
function for discriminator LD(D,G) is defined as:

max
D∈1−Lipschitz

LD(D,G) = logD(x)|
x∼data − logD(G(z))|z∼noise (3)

where z is a random latent vector. 1−Lipschitz functions are the functions whose
disturbance of input is always greater or equal to the disturbance of their out-
put. According to the existing techniques, 1−Lipschitz function is implemented
through two different methods: (1) weight clipping method (WGAN-WC) and
(2) gradient penalty method (WGAN-GP). WGAN-WC method enforces the
weights clipped in a pre-assigned range. And the WGAN-GP method, also known
as Improved WGAN, proposed by [7], penalizes the gradient with a soft regu-
larization term if the length of the gradient is larger than 1.

The contribution of WGAN theory lies in: (1) Defining a smoother loss func-
tion that can avoid the over-large step gradient problem; (2) Solving the prob-
lem of GAN training instability in an innovative way, make it unnecessary to
carefully balance the training of generator and discriminator, (3) Theoretically
solving the problem of model collapse and ensuring the diversity of generated
samples [8]. (4) The Wasserstein-based method provides a better mathematical
definition of the distance between the real data distribution and the fake data
distribution[28].
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2.3 CGAN

Inspired by the conditional probability, feeding the GANs with additional condi-
tions results in a novel variation of the GAN, namely, Conditional GAN (CGAN),
which is proposed by [18]. Generally, we separate unsupervised learning from
supervised learning by judging whether the neural network can extracting rules
from unlabeled data. Through the CGAN, the generated model is trained by the
joint probability distribution of the training data samples and user-specified ad-
ditional conditions (such as its labels), it successfully extends the original GAN
model from unsupervised learning into supervised learning. In order to solve the
problem of how to generate a model given specific requirements, the improved
method feeds such conditions into both of the discriminator and the generator
networks (See Figure 3). For example, if the user specifies the CGAN to generate
the handwritings for number 3, then the networks of CGAN can be trained with
the prior knowledge of classification information (namely, the labels of 1, 2, 3,
..., 10, etc.) together with the image pixels information. During the training,
the generator takes both the label and the latent noise vector z as the input,
and pass the label to the discriminator. For discriminator, either the generator
generates a poor-quality image or it generates an image not matching with its
input label, it will be detected as fake data. In such a way, the discriminator is
able to improve both the quality of the generated image and the correlations be-
tween the generated image and its label through the feedback for the generator.
As shown in experimental results, CGAN improves the original GAN by adding
controllable conditions into the model it is able to generate user-desired results
given to their requirements.

Fig. 3. The structure of CGAN.

2.4 InfoGAN

As proposed by [2], InfoGAN is the GAN extended with information maximiz-
ing theory. The output of the original GAN model is G(z), where z is a totally
unstructured random vector. During the training, there are no additional re-
strictions on z to generate data, therefore, within the neural network, there are
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complex relations and connections between z and G(z), namely, output G(z) is
highly entangled with input z, and make the individual elements in vector z loss
their correspondence to the specific semantic features of the data. InfoGAN has
made improvements by adding a highly structures latent code c, changing the
output to G(z, c) and splitting the original input of the generator model into
two parts: (1) the random noise z, and (2) a random latent code c which is used
to targeting the semantic features of the data distribution[28]. (See Figure 4 ).

Fig. 4. The structure of InfoGAN.

According to the hypothesis from [2], there should be high mutual informa-
tion between latent codes c and generator distribution G(z, c), therefore, in order
to maximize the mutual information between the c and G(z, c), it incorporates
an assistant classifier Q(c,G(z)) to classify the latent code c from the synthesized
fake data G(z). Therefore, only if c has connections to the salient features of data
so that it can be classified correctly by the classifier Q. Put this in another way,
InfoGAN can be generalized as an unsupervised version of conditional GAN as
it plays a role as both an encoder and a decoder himself at the same time. For
simplicity, some of the implementations of InfoGAN shares part of deep neural
network N for both the classifier and discriminator. The discriminator has a
boolean output true or false for identifying the real data from fake data, while
the output latent code c′ are classified through the classifier Q, which is used
to be compared with the input latent code c fed into the generator G. If the
classified output latent code c is closer to the original input latent code c, it will
result in a higher score for the generator G as the generator is able to extract
the semantic information from latent code better.

Specifically, when learning to generate images, images have many control-
lable meaningful dimensions. For example, In the MINIST dataset, the latent
code c can be a continuous value to represent the thickness or rotation of the
handwritten letters. Similarly, in the celebrity face dataset CelebA, c can be a
variable to control the eye size, smiling degree, and hair length [8]. The rest
parts of the latent code are not obvious to observe, or there doesn’t exist any
salient feature, therefore, they are kept as the random part of the latent vector
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z. InfoGAN extends the original GAN model with the ability to synthesize more
controllable data representation by tuning the values in c[20]. Besides, the user
can also control the dimension of c so that the InfoGAN can adjust the gener-
ated images in a specific semantic dimension [22]. Using this latent code-based
variable modeling mechanism, InfoGAN has taken another step forward in the
development of GANs.

2.5 EBGAN

According to the original GAN model, in the beginning, the performance of
the discriminator is poor and it is improved step by step as more and more
real data and fake data are fed in. Therefore, the generator improved extremely
slowly in the case that the discriminator is not well trained. However, EBGAN
(Energy-based GAN) first proposed by [28] which extends the GANs with an
auto-encoder/decoder which is pre-trained (See Figure 5 ). As the auto-encoder
is pre-trained through the real data by minimizing the energy which measures
the difference between the decoded images and the input images. Therefore,
when the fake images are fed into the autoencoder, they will not be decoded
correctly until the generated fake images look real.

Fig. 5. The structure of EBGANs

By minimizing the energy value, extracted from the well-trained discrimi-
nator, which is smaller in the region near the real data domain but higher in
the non-real data domain [20], the generator will be improved much faster at
the beginning than the original GAN model. As shown in the success of the
experiments, EBGAN gives GANs an explanation of the energy model, that is,
the generator aims to produce the samples with the lowest energy according to
the decoded data from the discriminator, while the discriminator aims to give
the samples with higher energy to reject the fake data from the generator. From
the point of view of the energy model, EBGANs extend the GANs structure
with a more and wider range of generalizing the loss function in a novel way.
For example, VAE-GANs proposed by [14], which uses variational autoencoders
(VAE) as discriminators within the GANs framework and some other variations
of EBGANs take a further step along with this research direction.
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3 Application of GANs

As a powerful tool to generate realistic data, GANs are widely used in different
areas. The most general application of GANs is to synthesize a fake image that
looks like a real one and editing the existing image into a synthesized image
without distortion. According to the strengths from diverse variations of GANs,
GANs has been widely used among different areas to solve real-world tasks and
problems. In this section, some of the recent representative works of GANs are
selected and introduced.

3.1 Image Synthesis

Image synthesis is the most general application of the variations of GAN models.
There are several famous image datasets (See Figure 6) serving as benchmarks
for evaluating the efficiency of a GAN model. For example, the MNIST database
of handwritten digits proposed by [15], CelebA dataset of a large-scale celebrity
faces attributes proposed by [17], and Fashion-MNIST proposed by [26].

(a) MNIST samples (b) CelebA samples (c) Fashion-MNIST samples

Fig. 6. This figure displays the sample data from there benchmark database (a) samples
from the MNIST database[15], (b) samples from the CelebA database [17], and (c)
samples from the Fashion-MNIST database [26].

Different variational GAN models demonstrate the improvements in their
performances on the benchmark database. [24] devised DCGAN to generate dif-
ferent ranges of images including bedroom and face images, and prove that the
synthesized images are not retrieved from the existing image database. Its per-
formance compared with the ground truth of MNIST and the original GAN are
shown in Figure 7. As shown in Figure 8, WGANs demonstrate their capability
in generating images with high-qualities. Beyond this baseline, CGAN is moving
a step forward which is able to generate the samples with specific conditions as
shown in Figure 9. As shown in Figure 10, InfoGAN is able to extract the seman-
tic information from the sample images and find the relations between the latent
code c and such semantics. This provides with users a more controllable interface
to generate the desired images. Based on the performance of DCGAN, EBGAN
makes further improvements in generating high-quality images. As shown in the
LSUN bedroom dataset (See Figure 11), the left images are generated with the
DCGAN, the right images are generated with the DCGAN, some noise can still
be found in the DCGAN, but in EBGAN, the noises are less obvious.
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(a) MNIST (b) GAN (c) DCGAN

Fig. 7. Performance of DCGAN: (a) samples from the MNIST dataset, generations
from the original GAN, and generations from the DCGAN. Image is cited from [24].

Fig. 8. Images synthesis from the WGAN generator. Left: WGAN model. Right: origi-
nal GAN model. Given the bedroom figure dataset, both models produce high-quality
samples. Image is cited from [1].

Fig. 9. Generated MNIST digits with CGAN, rows (from top to bottom) represents
conditioned labels from ”2”, ”3”, ”4”, ”5”, to ”6”. Image is cited from [18].

(a) Digit type(c1) (b) Rotation(c2) (c) Width(c3)

Fig. 10. InfoGANis able to correspond the latent code c with the image semantics: In
(a), varying c1 corresponds to different digit types; in (b), a small value of c2 denotes
left-leaning digit whereas a high value corresponds to right-leaning digit; in (c), c3
smoothly controls the width of the strokes. Image is cited from [2].
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(a) DCGAN (b) EBGAN

Fig. 11. This figure compares the generator performance between DCGAN (a) and
EBGAN (b) Image is cited from [28].

3.2 Image Editing

As GAN models and technologies are getting mature, the extensions of the
GANs are increasing rapidly, especially in the area of image editing. As tra-
ditional ways to edit the image, the popular image processing software, such
as Photoshop developed by Abode company, is widely used among multimedia
artists and designers. However, even the software is getting more powerful and
provides more easy-to-use functions, there still need lots of manual efforts from
the designers. Therefore, GANs’ impressive synthesis ability attracts more and
more researchers to develop image auto-editing tools through deep neural net-
works. Typically, image editing is divided into two types: local editing and global
editing. The most famous application of deep learning on global editing is the
image style transfer technique [5]. Most of the existing global editing algorithms
are built on image-to-image translation networks and result in surprising results
[23]. However, unsupervised image-to-image translation and image local editing
remain challenging before the appearance of the GANs models. As local image
editing techniques require more conditions than the global image editing (such
as whether the stitching is natural, whether the edited part is consistent with
the full image content, etc.), this challenges of the local image editing techniques
provide a perfect stage for the GANs to demonstrate their specialty.

As the GANs model can repair and complete the missing area of the image
according to its surrounding area from the semantic level, it provides more natu-
ral and acceptable results than the nearest neighbor stitching method. Typically,
GANs work through the Context Encoder (CE) [27], which are widely used for
high-resolution image patching under specific circumstances. CE includes two
parts: Encoder and Decoder, which typically incorporate DCGAN applied with
ADAM optimizer to achieve image auto-completing with highly satisfying qual-
ity. For example, [3] successfully change the status of the people’s eyes in an
elegant manner using the Exemplar GAN, a variation of CGAN. As shown in
Figure 12, Exemplar GAN can achieve photo-realistic, high-quality, and person-
alized in-painting function to edit the image in an astonishing way. As another
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impressive work for image completion with high consistency between local im-
age and global image, high image resolution, and extremely photo-realistic image
content, [10] successfully achieved the real-time and interactive auto-completing
of local image editing skills using GAN model (See Figure 13). At the same
time, the face editing skills also improve. As shown in the Figure, [23] it suc-
cessfully devised a conditional DCGAN-based approach to automatically edit
the human face and hair image in a time-saving manner simply by sketching
on the face image with simple curves. This is a great invention as it opens the
eyes for people towards photo editing through sketching, the most convenient,
and straightforward way to edit the images. Also, there are many other types of
applications of the GANs that are not listed here, which will be briefly discussed
in the discussion sections.

Fig. 12. Eye editing using Exemplar GAN. Image is cited from [3].

Fig. 13. Auto-image completion using GAN. Image is cited from [10].

Fig. 14. Sketch-based interface for face image auto-editing using CDCGAN. Image is
cited from [23].
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4 Discussions and Conclusion

Besides image synthesis and editing, GANs has more various kinds of applica-
tions among different research areas, for example, GANs have deep influences
on image enhancement, super-resolution. The same kind of image, such as face
image enhancement from low-resolution face image to high-resolution image, can
be better implemented by GANS. The idea is to use a low-resolution image as a
constraint condition to generate the realistic high-resolution images[24]. As an-
other example, the super-resolution energy adversarial network (SRGAN) [16],
without depending on refined data sets, it can enhance and denoise various types
of images. The features of SRGAN includes: (1) completing the missing part of
images with the constraint on the global context of the generated image to en-
sure the smoothness of the result; (2) SRGAN feed the generated data and real
data into the VGG-19 network respectively, define the loss items according to the
difference of the feature map and adds normalization to the output[20]. Finally,
after combining these loss items including mismatching loss, image smoothing
loss, and feature map difference loss, the super-resolution image is generated by
feeding into the GANs framework through minimizing the loss functions.

Besides, the GANs have been extended into the sketch restoration and col-
orization techniques. Sketch restoration refers to the technique that can convert
the drawing of sketches into realistic color images. Its special case is portrait
restoration. A DCGAN can complete the restoration of draft drawings [13]. it
gives the training methods of two kinds of image databases with corresponding
relations, finds the relationship between database images, and gives a general so-
lution of sketch-to-image conversions, such as the conversion of the street scenes,
the sketch of buildings, the terrain elevation from a contour map. Traditional
image coloring methods do not use massive data, and image coloring can not
be applied to all types of pictures. [28] use Patch GAN network to complete
the picture coloring work, and make full use of massive data to achieve better
results. This proves that GAN plays an active role in sketching techniques.

In conclusion, generative adversarial network(GANs) has become one of the
most important and influencing methods in deep learning. It has the advantages
of fully fitting data, faster synthesis speed, and realistic data generation. The
academic research of the GANs model is progressing rapidly. The original GANs
model is trained by MinMax optimization. The conditional generative adver-
sarial network(CGAN) adds preconditions to input data in order to provide the
controllability of the output. DCGAN, a deep convolution generation adversarial
network, proposes a stable training network structure to prevent training col-
lapse. InfoGAN controls semantic change through latent code and extracts the
relations between the latent code and its corresponding semantic feature of the
training data. EBGAN explains the adversarial network from the perspective
of the energy model. WGAN defines a more smooth distance measure for the
loss function and gives a better mathematical definition of the distance between
real data distribution and fake data distribution, which theoretically solves the
problem of training collapse and instability. As a powerful, robust, and reliable
tool, the GANs model has been widely used in image synthesis, image editing
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image repair, image denoising, sketch restoration, sketch colorization, and other
image processing area. At present, however, there is no quantitative standard for
evaluating the realism of synthetic images, that is, it is hard to quantitatively
measure how realistic an image is. It can be only judged subjectively whether
the synthesized images look natural and realistic. This remains an open topic for
the GANs community. In the near future, GANs will be applied to more general
applications not only within the image processing domain. For example, music
synthesis using GANs to generate different styles of music composed by different
composers or even create innovative music styles in a ”masterpiece” level like fa-
mous musicians such as Beethoven and Mozart. The GANs can also be extended
to write articles and poems with different styles and cultural backgrounds. When
the GANs are getting more mature, even the GANs can take over human jobs
such as movie directors who are directing new movies including story design and
character artistic design, choreography artists who are designing new dance for a
group of dancers and so forth. In one last word, GAN is going to change human
lives from different aspects in the near future.
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