
PM4VR: A Scriptable Parametric Modeling Interface for
Conceptual Architecture Design in VR

(Supplementary Material)
Wanwan Li

University of South Florida
Tampa, Florida, USA

Figure 1: Example of standard I/O using Java♭.

1 JAVA♭ LANGUAGE PROGRAMMING
1.1 Introduction to Java♭ Language
Java♭ language is a language similar to Java language, its basic syn-
tax is similar to C language, but its style is more concise and simple
than Java language. According to the definition of Java♭ language,
a source code file called Java♭ script (*.javab) can only contain one
class, so as to make the structure of its program very simple and
straightforward. In addition, the Java♭ language satisfies the closure
and completeness between operations on three data types including
integers, doubles, and strings. That means the operation between
every two data types is defined. At the same time, this language
implements the function call of external classes and data access. In
that way, one class can access multiple classes, and other classes
can play an important role in data encapsulation.

1.2 Java♭ Language Programming Fundamentals
The basic functions of the Java♭ language include the declaration
and assignment of three data types, arithmetic expressions of inte-
ger and double-precision floating-point numbers, 3D vector opera-
tions, string operations, logical operations, array operations, func-
tion call, method call, class declaration, class initialization, instance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM SIGGRAPH VRCAI 2022, December 27-29, 2022, Guangzhou, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Figure 2: Example of file I/O using Java♭.

assignment, for loop statement, while loop statement, do-while loop
statement, until loop statement, break statement, function return,
if-else statement, switch-case statement, this call statement, etc.
This subsection will introduce some Java♭ programming examples
on these fundamental topics.

Standard I/O. The standard Input/Output (I/O) of the console is
often the first program written by beginners. Here we also provides
a "Hello World!" program using Java♭ script. The extension of Java♭
script is "*.javab", for example, the source code main.javab and its
execution result are shown in Figure 1.

File I/O. The function of Java♭ file reading and writing is similar
to the file reading and writing in C language, but the language style
is the action stream style, that is, the programmer only needs to
pay attention to the execution action of the instruction and does
not need to care who executes the instruction. This code style is
just right Avoid pointers and or some other instructions unrelated
to the execution logic in the program. The code of this example
and the execution result are shown in Figure 2. This action stream
style is also extended to the Java♭ 3D modeling interface, so as to
provide users with a convenient graphics programming platform.

Array. Java♭ supports static definition and declaration of array.
User can create a static array by indicating the length of the array
or by listing each element in the static array which is similar to the
Java language. Figure 3 shows the execution result of a Java♭code
that tests the declaration of arrays.

Method. There are five return types of methods in Java♭, one is
the public type, which specifies the execution entry of the virtual
machine. The other three types of methods are corresponding to
three basic types (int, double, and String) and the last type is the

https://orcid.org/0000-0002-9425-2633
https://doi.org/XXXXXXX.XXXXXXX


ACM SIGGRAPH VRCAI 2022, December 27-29, 2022, Guangzhou, China Li et al.

Figure 3: Example of array declaration using Java♭.

void. Methods can be called not only internally (call), but also be
called externally (invoke). It can be seen that in java♭, there is
no distinction between public methods and private methods. It is
important to point out that the Java♭ method supports recursion,
as can be seen from the running example shown in Figure 4, user
can implement a recursive algorithm for Tower of Hanoi in Java♭.

Figure 4: Example of method call using Java♭.

Class and Object. Java♭ is an object-oriented language. When
compiling a Java♭ script, JVM♭ first constructs a class table ac-
cording to the inclusions of the class in the first line of the Java♭
script, compiles and imports according to each class name in the list
one by one in a recursive manner (that is, multiple classes can be
called from one main class, and external classes can call more other
classes). According to this idea, when Java♭ compiles the included
class, it only needs to load the attribute fields of the method table
in the class file, such as method name, method pointer, and method
return type. In this way, it can compile the external class in the
current syntax translator, so as to implement the object-oriented
programming mechanism correctly.

The execution of each class is allocated with a separate JVM♭,
and each virtual machine and its corresponding object have dif-
ferent data segments but share the same code segment so that
different objects for the same class share the same instructions but
present completely different execution results. The reason is that
the virtual machines corresponding to the objects for each class
have completely different data segments, which means that they

Figure 5: Example of class and object using Java♭.

will have different running results when loaded, which just reflects
the idea of object-oriented encapsulation. More specifically, when
the JVM♭ is running and if there is a method call to another class
in the program, the virtual machine instance of the current class
will search the machine table and find that method’s entry address
specified in another class’s corresponding virtual machine instance.
Then, it will set the instruction pointer to the method entry ad-
dress and execute another virtual machine until the RET command
is encountered and returned to the current host virtual machine,
thereby JVM♭ implements the invoke to object methods.

On Java♭ platform, its object-oriented technology supports the
module encapsulation of 3D modeling, and it is of great significance
in building multi-branch 3D scenes. For example, users can use
object-oriented technology to write a scene in a class and import
that scene by calling the method of that class. This can help user
to include the parametric designs from other developers without
seeing others’ code, which is also the way this platform implements
the idea of encapsulation. As an object-oriented language, Java♭
provides a very flexible encapsulation of classes. This encapsulation
satisfies security and simplicity. A static class can be activated as a
dynamic class through the new method, and multiple classes can
be derived from a class through the declared method. Through "."
operator, internal method of external class can be called.

Figure 5 shows an example that is using class and objects in
Java♭. In this case, the main.javab achieves the function of reading
a file (in.txt), printing line numbers, and writing a new file (out.txt)
with each line of sentence reversed (e.g., "Javab" becomes "bavaJ").
However, as specified earlier that file I/O in Java♭ is implemented
based on action stream, therefore, only one file pointer is allocated
to each object. To solve this case, another class implemented in
File.javab writes the out.txt while the main.javab is reading in.txt.

1.3 Advanced Java♭ Language Programming
In order to facilitate the 3D programming in Java♭, we implement
advanced math calculation and data structures in Java♭ that support
special calculations related to parametric modeling. There are three
new data types defined for this purpose, they are 3D vector, para-
metric function, and transform group. As advanced programming
topics, these data structures are extremely useful in parametric
modeling with Java♭ and PM4VR. This subsection will introduce
some Java♭ programming examples on these advanced topics.



PM4VR: A Scriptable Parametric Modeling Interface for Conceptual Architecture Design in VR
(Supplementary Material) ACM SIGGRAPH VRCAI 2022, December 27-29, 2022, Guangzhou, China

Figure 6: Example of math calculations using Java♭.

Math. Java♭ has powerful math calculation support for commonly
used math functions such as trigonometric functions, it also has
some specially designed simplified math representations such as nth

power: 𝑥𝑛 , nth root: 𝑛
√
𝑥 , square root

√
𝑥 , factorial n!, absolute value

|x|, permutation 𝑃 (𝑚,𝑛), combinations 𝐶 (𝑚,𝑛), sawtooth function,
hyperbolic functions, Taylor series expansion, etc. Some example
code for testing math calculations in Java♭ are written in main.javab
and its execution result is shown in Figure 6.

Vector. As a special data structure supported by Java♭, a 3D vector
consists of three doubles as its components of x, y, and z. User
can declare a vector directly using Vector v=<x, y, z>; There are
multiple vector operations directly implemented in Java♭ compiler
inclduing add, subtract, magnitude or length, cross product, dot
product, angle between to vectors, project one vector to another,
etc. Some example code for testing vector calculations in Java♭ are
written in main.javab and its execution result is shown in Figure 7.

Figure 7: Example of vector calculations using Java♭.

Function. Another important feature of Java♭ is the introduction
of the definition of parametric function. The concept of function
in Java♭ is different from the function call in C. Rather, in Java♭, a
function is a mathematical representation of a 3D vector or a 1D
scalar that is changing along with parameters. Users can define
any mathematical function using this type of coding structure:
func(param1, param2, ...) f=[arg1=..., arg2=..., ...] <x, y, z>; After
setting up the steps for each argument in f, users can print the values
of function f by calling Java♭method printf(f , range1, range2, ... );

Figure 8: Example of function programming using Java♭.

Figure 8 shows an example of Java♭programming using function.
In this example, the user defines two 3D vector functions which are
f and g respectively. Both have three parameters of 𝑥 ,𝑦, and 𝑧 along
with one constant argument of 𝑘 = 2. In this case, the user setup
steps as 2 and setup range of 𝑥 ∈ [1, 2], 𝑦 ∈ [3, 4], and 𝑧 ∈ [5, 6],
therefore there will be 2×2×2 = 8 steps print out for each function.
This feature is the basis for parametric modeling in Java♭, as most
parametric designs use this kind of mathematical representation.

Transform Group. Transform group is a specially designed gram-
mar in Java♭ so as to transform a group of 3D objects in the scene.
The transform group is following with a tree structure. That means
in the transform group, a child’s transformation is based on the
father’s transformation. Due to this feature, we use a specific type
of code block to represent the tree structure of the transform group.
This code block is denoted as "[" and "]".

Figure 9: Example of transform group using Java♭.

More specifically, when the interpreter implemented in the Jav-
abCompiler.cs reads "[", it will create a child for the current
gameobject (called root), and set this child as a new root. And
every time when JavabCompiler.cs reads "]", it will set the current
root’s father as the new root. In this way, every gameobject added
between "[" and "]" will belongs to the child level of the root. Fig-
ure 9 shows an example of Java♭programming using transformation
and transform group code blocks. In this example, the user uses
Java♭ script to generate a scene with a vase (a prefab in Unity), a
cube, a sphere, and a cylinder. Two orthogonal cloth boards (flat
cubes) are loaded as the background of the scene.



ACM SIGGRAPH VRCAI 2022, December 27-29, 2022, Guangzhou, China Li et al.

Addressing Methods Examples
Direct access of constant value E.g. "5" means: 5
Direct access of identifier table E.g. ”%5” means: IdentifierTable[5]
Direct access of integer table E.g. "@5" means: IntegerTable[5]
Direct access of double table E.g. "#5" means: DoubleTable[5]
Direct access of string table E.g. "$5" means: StringTable[5]
Direct access to the vector table E.g. "\5" means: VectorTable[5]
Initialize vector from double table E.g. "∼5" means: new Vector(#5, #6, #7)
Indirect access of the integer table E.g. "&5" means: IntegerTable[IdentifierTable[5]]
Indirect access of the double table E.g. "^5" means: DoubleTable[IdentifierTable[5]]
Indirect access of the string table E.g. "*5" means: StringTable[IdentifierTable[5]]
Indirect access of the vector table E.g. "<5" means: VectorTable[IdentifierTable[5]]
Secondary indirect access of integer table E.g. "&5" means: IntegerTable[IntegerTable[IntegerTable[5]]
Secondary indirect access of floating point table E.g. "!5" means: DoubleTable[IntegerTable[IntegerTable[5]]
Secondary indirect access of string table E.g. "?5" means: StringTable[IntegerTable[IntegerTable[5]]
Secondary indirect memory access of vector table E.g. ">5" means: VectorTable[IntegerTable[IntegerTable[5]]
Secondary indirect memory access of vector table E.g. ">5" means: VectorTable[IntTable[IntTable[5]]

Table 1: Addressing methods in ASM♭ instructions.

2 ASM♭ LANGUAGE INSTRUCTION SET
In order to implement a high-efficiency virtual machine, the tradi-
tional assembly instructions are difficult to meet the requirements.
Therefore, an instruction set specially designed for the Java♭ Virtual
Machine (JVM♭), namely, the ASM♭ instruction set, is used here.
The style of the ASM♭ instruction set is inspired by the standard
ARM instruction set which is a variable-length instruction set. After
the instruction is read from the class file, it is loaded into the virtual
machine, then a table structure (similar to the interrupt vector table)
is created. Then, each instruction is loaded to JVM♭ and executes
different operations according to different instructions’ identifiers.

2.1 Addressing Methods
In the ASM♭ instruction set, different memory addressing methods
are used to manipulate different data, thereby achieving different
execution results. There are several different addressing methods
as show in in Table 1. Based on different addressing methods, the
virtual machine can flexibly access and change the data after load-
ing the data segment from the class, so as to properly execute the
instructions, such as the meaning of this instructionMUL \4,<5,*>6
is to perform the dot product operation of vectors and its mathe-
matical calculation is:

𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑎𝑏𝑙𝑒 [4] = 𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑎𝑏𝑙𝑒 [𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [5]]
·𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝑎𝑏𝑙𝑒 [𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [6]]],

where the · operator represents the dot product operation between
vectors. In addition, when accessing memory, data type conversion
can be performed more flexibly between different data types. For
example, the specific meaning of the instruction MOV &4,?5 is:

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [4]]] =
(int) (𝑆𝑡𝑟𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒 [𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑇𝑎𝑏𝑙𝑒 [5]]])

2.2 Instruction Categories
In general, there are eight different functional modules in the JVM♭.
Each functional module corresponds to a group of ASM♭ instruc-
tions. Each instruction has different execution aproach. There are
108 kinds of instructions that the JVM♭ can execute. These func-
tional modules can be divided into the following eight categories:
arithmetic calculation, logic or Boolean operations, execution con-
trol, stack and queue operations, input and output control, mathe-
matical calculation, parametric function, and Unity PM4VR Interac-
tions. Figure 10 shows the ASM♭ instructions and their identifiers.

Figure 10: ASM♭ instructions and identifiers.



PM4VR: A Scriptable Parametric Modeling Interface for Conceptual Architecture Design in VR
(Supplementary Material) ACM SIGGRAPH VRCAI 2022, December 27-29, 2022, Guangzhou, China

Figure 11: ASM♭ program sample of array declaration.

Figure 12: ASM♭ program sample of function declaration.

2.3 ASM♭ Program Samples
Figure 11 shows the ASM♭ program sample of array declaration. In
this case, a string array s is declared with initializations (s’s address
is specified in IdentifierTable[1]=1) where IntegerTable[1]=5 is the
s.length and IntegerTable[2..6]=[0..4] are the indices of each string
element in s. When it executes int i=0;, the value of i is stored
in IntegerTable[7] and it is initialized as 0 (i’s address is specified
in IdentifierTable[2]=7). When it executes i<s.length; which is
corresponding to LT @9,&2,&1, it will compare i’s value stored
in IntegerTable[7] with s.length’s value stored in IntegerTable[1].
if i is less than (LT) s.length, IntegerTable[9]=1; Otherwise, Inte-
gerTable[9]=0; Then, JZ @9,16 instruction pointer will jump to
line 16 (which is EXIT) if IntegerTable[9] is 0; Otherwise, it will
execute INC &2 to increase i’s value by 1, execute JMP 9, and jump
to line 9 so as to simulate the behaviour of for loop.

Figure 12 shows the ASM♭ program sample of the function dec-
laration. In this case, a function f(t) is declared where (t’s address
is specified in IdentifierTable[1]=2). According toMOV \0,∼3 the
func(t) f returns to a vector initialized from DoubleTable[3][4][5]
and store this vector into the VectorTable[0]. After executing STEP
@0 the value in IntegerTable[0]=10 is loaded in JVM♭ as the step
value. Once the ASM♭ instruction of PRINTF $0,\0,1,2,#0,#1,1,7
is executed, the JVM♭ will do several steps: getting the string "f" in
StringTable[0] as the function name, repeating update the param-
eter t’s value in DoubleTable[2] by uniformly sampling 10 times

between the range specified in DoubleTable[0][1] (which are 0.1 and
1.0), executing the instructions between line 1 and line 7 (s.t. Dou-
bleTable[3] = DoubleTable[2] = t, DoubleTable[4] = DoubleTable[6]
= sec(t), and DoubleTable[5] = DoubleTable[7] = csc(t)), updating
and printing VectorTable[0] accordingly.

3 UNITY♭ AND PM4VR: MORE DETAILS
Figure 4 in the main paper shows an example of PM4VR’s exe-
cution process of adding a wooden sphere with a radius speci-
fied by a range control named "s" whose current value is 0.5. As
highlighted in yellow rectangles, when a user calls setMaterial
("Material Filename"), the user’s predefined material in Unity’s "As-
sets/Resources/Materials" folder will be automatically assigned to
the sphere game object through the JavabCompiler.cs. When ge-
tRange ("Range Control Name") is called (as highlighted in cyan
box), JavabScriptBehavior.cs will write its range controls’ names
and values into the Unity♭ script before the JVM♭ starts. Then,
when JVM♭ starts, it will load the range controls’ names and values
from the Unity♭ script. This process is applied every few seconds
according to the specification put in the "Interval" text box on Unity
Editor. When the user calls scale(size) (as highlighted in red box),
JavabCompiler.cs will setup the scale of the child until the child
is created from the "[" symbol, this scale is applied onto that child.
Figure 13 shows the Java♭ scripts and their corresponding execution
results for the examples included in the Main Paper (Section 3.5).



ACM SIGGRAPH VRCAI 2022, December 27-29, 2022, Guangzhou, China Li et al.

Figure 13: Java♭ script for the examples in the Main Paper (Section 3.5).


	1 Java Language Programming
	1.1 Introduction to Java Language
	1.2 Java Language Programming Fundamentals
	1.3 Advanced Java Language Programming

	2 ASM Language Instruction Set
	2.1 Addressing Methods
	2.2 Instruction Categories
	2.3 ASM Program Samples

	3 Unity and PM4VR: More Details

