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Abstract—We present an easy-use interactive user interface
for simulating Automaton and Turing machine in Augmented
Reality (AR). We design a C-like programming language to
describe the automaton and Turing machine, visualize their
data structures, and simulate their running process in AR
given to the user-specified input string or tape. Our Automaton
and Turing machine simulator support three different modes,
including Finite Automata (FA), Pushdown Automata (PDA),
and Turing Machine (TM). We have deployed our AR Turing
machine simulator on HoloLens2, users can interact with the
simulator through AR buttons at the same time they can edit the
scripts on the desktop where there is a USB cable connecting the
desktop and HoloLens2 such that the Turing machine simulator
can be updated simultaneously as users update their scripts. This
mechanism can enable the user to efficiently design the Turing
machine through our interactive interface in augmented reality.

Index Terms—augmented reality, automaton theory, Turing
machine simulator human-computer interaction

I. INTRODUCTION

As one of the greatest cornerstones in computer science,
Alan Turing proposed the first prototype of modern digital
computers, namely, the Turing machine. As described by
Turing himself [1], a computing machine can read symbols on
tape and make the corresponding reactions including update
its configuration or rewriting that input symbol as output.
This epoch-making description of abstract machines influences
several generations who are aiming at design computers and
algorithms. Even today, for those people who are majored
in computer science, computer scientists, and researchers,
computational theories are still fundamental topics that require
a solid background in Turing machine and automation theories.
Therefore, for education purposes, tons of Turing machine
simulators appear nowadays and be applied to the teaching
of computation theory courses. It becomes a hot research
topic to develop an effective user interface to help beginners
understand the concepts about Turing machine more quickly.

However, most of the existing platforms for Turing machine
simulations are not easy to learn as there are lots of complex
operations and definitions that are not covered by the best-
selling text book [2] of introduction for computation theory
which is using an easy-to-use C-like description for Turing
machines. As a consequence, it takes extra time for most
beginners to get familiar with and master the skills of how
to use that simulator. On the other hand, virtual reality and
augmented reality technologies are getting popular, especially
due to the VR and AR’s impact on various types of educational
programs such as creative arts [3], dancing [4], and diving [5]
etc., virtual training [6] and interactive simulation also become

Fig. 1. AR Turing Machine Simulator.

a trend for modern computer science education due to their
immersiveness [7]. Thusly, AR can be a widely welcomed
platform to illustrate the Turing machine for effective training
and over-perform other platforms.

Given these observations, by taking the advantages of
the augmented reality technology and lowering the learning
curve for the beginners through a novel C-like and easy-
use programming script, we propose an immersive 3D in-
teractive interface for Turing machine design and simulation
in augmented reality as shown in Figure 1. After deploying
our AR Turing machine simulator onto an AR device named
HoloLens2, users can interact with the simulator through AR
buttons. At the same time, there is a USB cable connecting the
desktop and HoloLens2, therefore, users can edit the scripts
on the desktop and the Turing machine simulator can be
updated simultaneously when users update their scripts. This
makes our system a plausible platform for the users to design
their Turing machines with interactive interfaces in augmented
reality. Video demo of our work can be found through this link:
https://youtu.be/U1vLvY9YPwg

II. RELATED WORK

In view of the importance of automaton theory and the
great impact brought by the Turing machine, lots of successful
works have been done to simulate automaton and Turing
Machines. Even at an early age, Hennie et al. [8] proposed a
two-tape simulation of multitape Turing machines. After then,
Robson et al. [9] has moved forward to simulate a single



tape Turing machine through a fast probabilistic random-
access machine (RAM). Furthermore, Dauchet et al. [10]
simulates the Turing machines by a left-linear rewrite rule
and with a regular rewrite rule [11]. Later days, another great
work has been done by Carpentieri et.al. [12] to simulate
Quantum Turing Machine (QTM). After then, more follow-up
works have been studied such as extending the Turing machine
simulator with uEAC-Computable Functions proposed by Zhu
et al. [13]. Recently, Dengel et al. [14] propose a metaphorical
representations that converts different states in a finite state
machine into a group of islands in virtual reality to improve the
educational quality. Nowadays, virtual reality play more and
more important roles in in computer science educations [15].
For example, VR has been used by Zable et al. [7] to develop
an effective tool for quantum computing education. Also,
convolutional neural networks (CNN) can be visualized with
virtual reality [16] to help students to understand how CNN
works during the training process.

However, nowadays, most Automaton and Turing machine
simulators are implemented as desktop apps or command line-
based apps. One famous work has been done by Hamada et
al. [17], a desktop version app of PAD and TM simulator
that helps students improve learning has been well-developed.
On this platform, students have to create the automation by
clicking buttons and drag arrows, therefore heavy mouse inter-
actions are needed to design the machine. We have overcome
such limitations by proposing an easy-to-use C-like script to
describe a machine directly. Similarly, some other work on
Automaton and Turing machine simulators such as [18], [19],
and [20] have common drawbacks such as the learning curve
is so high or the visualizations are either not straightforward
or over complicated. For example, one online Turing machine
simulator [18] has an over-complicated grammar to encode
a Turing machine, so, it takes a longer time for students
to master the skill to create a Turing machine to simulate.
As another example, [19] simulates the Turing machine on
the command line and it is very hard to read also is not
user-friendly to use. Similarly, [19] shows another complex
interface to simulate the Turing machine and there is a long
tutorial needs to follow to create your own simulations.

Therefore, our work is to make an automaton and Turing
machine simulator easy-to-learn and fun-to-use. We have to
important notions that (1) our input script to simulate the Tur-
ing machine is very carefully following the textbook standards
so that students are capable of making hands-on immediately
after reading the textbook. (2) We have take the advantage of
Augmented Reality technologies to make the learning process
very impressive and attractive, as AR applications provide
such impressiveness by their attractive natures. Given these
two observations, in this paper, we proposed and introduce
the first well-designed Augmented Reality-based simulator for
automaton and Turing machine simulation.

III. AUTOMATON THEORY FUNDAMENTALS

The term ”Automaton” by definition is a ”self-acting unit”.
An automaton (Automata in plural) is an abstract self-acting

Fig. 2. One example of Turing Machine (TM) represented in
our proposed C language-like scripts. This TM accepts all the
language consists of only 1s. At the same time, it copy 1s
on the tape, in the end, there will be doubled number of 1s
appears on the tapes when the TM halts.

computing device that follows a sequence of operations au-
tomatically. Bellow are three types of automaton including
Finite Automaton (FA), Push Down Automaton (PDA), and
Turing Machine (TM). Finite Automaton (FA) is an automaton
with a finite number of states is called a Finite Automaton
(FA) or Finite State Machine (FSM). Pushdown Automaton
(PDA) is a type of automaton that can accept context-free
grammar. A FA can remember a finite amount of information,
but a PDA can remember an infinite amount of information.
Basically, a pushdown automaton is a finite automaton with
a stack. In general, a pushdown automaton has three main
components: (1)an input string, (2) a control unit, and (3) a
stack with infinite size. The stack head scans the top symbol
of the stack. A stack does two operations: (a) Push: a new
symbol is added at the top of the stack. and (b) Pop: the top
symbol in stack is read and removed. Turing Machine (TM)
is an accepting device that accepts the recursively enumerable
languages generated by type-0 grammars which were invented
in 1936 by Alan Turing. A Turing Machine (TM) consists of
an infinite length tape divided into cells where there is the
given input. It consists of a head that reads or writes the tape
and a state register. After reading an input symbol, that symbol
might be replaced, its internal state is changed, and it moves
from one cell to another by moving the head right (->) or
left (<-). If the TM reaches the final state, the input string
is accepted, otherwise rejected. In our system, both Finite
Automaton (FA), Pushdown Automaton (PDA), and Turing
Machine (TM) can be defined with C language-like grammar.
As shown in Figure 2, in this example, the scripts describes a
Turing machine (TM) that simulates a string copier that copy
1s on the tape. Then we will interpret such scripts though
our interpreter and construct the data structure of such Turing
Machine (TM) in both VR and AR for interactive simulations.

IV. IMPLEMENTATIONS

A. Data Structures

We developed a program that converts the easy-use C
language-like scripts into Turning Machine’s data structure for



Fig. 3. The transition table of a Turing machine.

interactive simulation. As defined in Sec III, those statements
followed by the keywords such as ”type=...”, ”state=...”, and
”final=...” specifying the structure of the Turing Machine.
After scanning each line in the input scripts, the data structure
is built up. In our system, the main elements in a Turning
machine’s data structure are listed below:

• Input Tape. A string denotes the read-only input tape.
• Active Tapes. A string array denotes the active tapes.
• Initial State. An integer denotes the index of initial state.
• Final States. An integer array denotes the final states.
• Input alphabet. A string array denotes input alphabets.
• Internal States. A string array denotes the internal states.
• Active States. An integer array denotes the active states.
• Active Pointers. An integer array of active tapes pointers.
• Transition Table. A string matrix of transition functions.

B. Interpreter

We have mainly implemented two types of operations when
interpreting the input scripts. The first operation is ”Next
Word” operator while another one is ”Get Words” operator. By
definition, ”Next Word” operator is defined through a function
NextWord(s, i, c) which takes the input script s, begin index
i, and an end symbol c as parameters; It returns a substring s′

that begins at index i and end with the character before end
Symbol c. For example, let input script s be ”type=TM;”, i = 0
and c is ’=’. Then NextWord(s, 0,′ =′) returns ”type”. At the
same time, the begin index i will increase as i′ = i+ |s′|+1.
So now i = 0 + 4 + 1 = 5, we call NextWord(s, 5,′ ;′ )
will return ”TM”. Similarly, function GetWords(s, i) which
takes the input script s and begin index i as parameters;
It returns a list of substrings S = {s1, s2, ...} that begins
at index i and each substring sk ∈ S is separated by ’,’
or ended by ’;’ in s. For example, let input script s be
”state=00,01,11,10;” and i = 6, then GetWords(s, i) will
return S = {”00”, ”01”, ”11”, ”10”}.

Every time when the keyword of ”transit=” is scanned in
the input scripts, then the interpreter will repeat scanning all
of the transition identifiers until the ”}” is met. As shown in
Figure 3, all transitions between every two status are stored
into a string matrix MN×N where N is number of the internal
states. In this case, the Turing machine is defined by the scripts
shown in Figure 2. So, there are N = 4 internal states namely
q0, q1, q2, and q3. Every transition in the table is represented
as a string Mi,j in format of ”Read/Write, Move” when there
is one or more transitions from the ith state to the jth state. For
example, according to the script there is one transition between
q1 and a2 is ”S(q1,X)=q2/1,->;”. Therefore, M1,2=”X/1,->;”

Fig. 4. Visualizations of our Turing machine simulator.

C. Visualizations

In order to visualize the data structure of the Turing
machine, as considering the most commonly used diagram
representation, those states are denoted as circles, transitions
are denoted as curved arrows, states names, and transition
conditions are labeled nearby the circles and curves. Specifi-
cally, our system proposes an automatic visualization approach
that achieves a one-cut-fitting-all effect. That is: putting all
different states in one horizontal line and connecting every
two transition states with a parabolic trajectory. Such methods
avoid heavy intersections among transition arrows automat-
ically. Hereby, the key observations are surrounded by how
to draw those parabolic trajectories smartly to avoid heavy
intersections. One trick used here is to adjust the curvature of
the parabolic trajectory according to how long two connected
states are distant away from each other. The curvature of the
parabolic trajectory increases as the distance increases and vice
versa. Mathematically, the parabolic trajectory connecting the
ith state and the jth state where there is a transition function
defined from i to j is formulated as:

fT
i,j(t) = (x0 ± kx

di,jt

2T
, y0 + kydi,j(1−

t2

T 2
)

where di,j represents the distance between the centers of
circles of the ith state and the jth state, (x0, y0) is the center
position between ith state and the jth state, t is an arbitrary
time when navigating along the trajectory and T is the total
amount of time when navigating along the half trajectory (as it
is symmetric). (kx, ky) is a vector to scale trajectory’s range.

As shown in Figure 4, this is the visualization of Turing
Machine using our method which depicts the example of
Turing Machine that copies 1s on the tape. It is represented
in our C language-like script as specified in Fig 2. The cyan
glowing sphere represents the current active state is q0. The
green circle denotes the q3 as the final state. Black squares
on the tape denote the pointer position of the active tape.
Note that there is one active tape corresponding to one active
state. The active tapes are visualized on the white blocks (in
the orange box), the transition identifiers (in the red box) are
labeled above each transition curve.
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Fig. 5. Testing our proposed AR simulator with different types of Deterministic Finite Automaton (DFA).

D. Interactions

As shown in Figure 4, in order to design and simulate
the Turing Machine effectively, we have developed several
main interactive functions including (1) Reload scripts (in
the purple box): when the label of ”F.A. Machine” (Finite
Automaton), ”P.D.A. Machine” (Pushdown Automaton), or
”Turing Machine” displayed on the simulator is clicked, the
C-like scripts in a specified text editor will be reloaded and
a new simulator will be constructed. (2)Initialize the state:
when the ”Start” button is clicked, the input string or tape
will be reloaded and the simulator will be reset to the initial
state. (3) Transit to the next states: when the ”Next” button is
clicked, the current states on the simulator will be transited to
the next status according to the transition functions specified
in the C-like input scripts. During the simulation process, the
HoloLens2 headset is connected with the desktop through a C-
type USB cable, at the same time, the user can edit the C-like
scripts through any text editor. After each update, the user may
reload the script and reconstruct the simulator. Users wearing
HoloLens2 can interact with the simulator with finger touch
in the mid-air by clicking the mentioned interactable buttons.

V. RESULTS

We demonstrate our results through an Augmented Reality
(AR) device. As we know, AR is an interactive experience
of a real-world environment where the objects that reside in
the real world are enhanced by computer-generated perceptual
information, sometimes across multiple sensory modalities,
including visual, auditory, haptic, somatosensory, and olfac-
tory [21]. Hereby, according to the nature of AR which is
fun, immersive, and sometimes even addictive, we deploy
our program onto an AR platform to enhance the education
effects [22]. Here we take the advantages of HoloLens2 [23],
a popular AR headset device developed by Microsoft, and
developed the application through Mixed Reality Toolkits
(MRTK) [24], which is a widely used AR plug-in on the Unity
3D game engine. We developed this program with one of the
most popular development tools for eXtended Reality (XR)
applications which are called Unity 3D [25]. As Unity 3D
has integrated APIs which XR developers can easily have
access to after installing the corresponding SDKs, the AR
application can be efficiently developed with a library called
Mixed Reality Toolkits (MRTK) which is a comprehensive,
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Fig. 6. Testing our proposed AR simulator with different types of Nondeterministic Finite Automaton (NFA).

scalable enterprise AR platform [26]. MRTK’s wide-ranging
solution suites provide practical AR technology that is widely
used among researchers nowadays.

In order to test the capabilities of our developed program,
we have designed different types of automata and Turing
Machine with our proposed C-like scripts and simulating them
with different input strings or tapes. As shown in Figure 5,
the left column shows the C-like script, the middle column
shows the initialization of the simulator (Run in Unity 3D)
and the right column shows the simulation result of the
simulator given to the input string specified in the C-like
script (Run on HoloLens2). Different rows demonstrate dif-
ferent types of automata or Turing machines respectively. Our
system is designed for simulating different types of automata
and Turing machines including Deterministic Finite Automata
(DFA), Nondeterministic Finite Automata (NFA), Pushdown
Automata (PDA), and Turing Machines (TM).

DFA. As shown in Figure 5, among the DFAs, the first one
simulates the door status which is open or closed decided by
whether there is any input (yes or no) to change the current
state. The second DFA simulates the machine that accepts

all 0-1 strings that contain an even number of 0s and an
even number of 1s. The third DFA simulates the machine
that accepts all 0-1 strings that contain a ”01” substring, or,
represented by a regular expression: (0 + 1)∗01(0 + 1)∗.

NFA. As shown in Figure 6, among the NFAs, the first one
simulates the machine that accepts all 0-1 strings that end
with a ”01” substring, or, represented by a regular expression:
(0+1)∗01. The second NFA simulates the machine that accepts
all 0-1 strings whose 5th symbol from the right end is 1, or,
represented by a regular expression: (0 + 1)∗1(0 + 1)4. The
third NFA simulates the machine that accepts all 0-1 strings
representing binary floating-point numbers, e.g., −1.10.

PDA. As shown in Figure 7, among the PDAs, the first one
simulates the machine that accepts all 0-1 strings that is
represented by the regular expression: 0n1n, n = 1, 2, 3, ....
The second PDA simulates the machine that accepts all 0-
1 strings who are palindromes or, represented by a regular
expression: wwR, w = (0+ 1)∗. The third PDA simulates the
machine that accepts all matching if-else statements. The last
PDA simulates the machine that accepts 0-1 strings containing
same number of 0s and 1s.
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Fig. 7. Testing our proposed AR simulator with different types of Pushdown Automaton (PDA).

TM. As shown in Figure 8, among the TMs, the first one
simulates the machine that accepts all a-b-c strings that are
represented by the regular expression: anbncn, n = 1, 2, 3, ....
The second TM simulates the machine that copies 1s. The
third TM simulates the machine that accepts a string of
0s whose lengths are 2n − 1, n = 1, 2, 3, .... The last TM
is nondeterministic and simulates the machine that accepts
ambn,m, n = 1, 2, 3, ... and replace a → X and b → Y .
Comparison with related works. We compared our AR
Turing machine simulator interface with some other existing
Turing machine simulator interfaces. As shown in Figure 9, (a)
demonstrates a command line-based TM simulator developed

by Gourlay et al. [19]. In this interface, states are put in
different lines on the console, different inputs are separated
into different columns, tapes are printed at the top, and the
active states are highlighted as white. However, this method
is not straightforward as the Turing machine diagram is not
visually presented. (b) shows a web page-based TM simulator
developed by Wolfram et al. [20]. Despite the visualization
is fancy enough to visualize the complex structure of a
TM, however, it is over complicated for beginners to learn.
Also, the way it presents the TM is quite different from the
popular textbook such as the one written by Sipser et al. [2]
which is widely welcomed by computer science students. As
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Fig. 8. Testing our proposed AR simulator with different types of Turing machines.

another web page-based TM simulator, (c) shows the web app
developed by Morphett et al. [18]. As we can see, the script
to design the TM is not straightforward and is hard to follow
for most beginners as well. Compared to these works, our
approach presents the Turing machine more immersively.

VI. CONCLUSION AND FUTURE WORK

Through an immersive AR device called Microsoft
HoloLens2 which is a pair of look-through glasses for mixed
reality with a head-mounted display that can render virtual
objects upon the real-world scene, we have successfully

simulated the automaton and Turing machine in Augmented
Reality. Users wearing HoloLens2 can interact with virtual
automaton and Turing machine simulator and update the script
in the real world simultaneously. In our proposed HoloLens-
based AR interface for Turing machine simulation, users are
able to observe and operate the transitions between different
configurations or states of the virtual Turing machine, such
simulations taking place on the table instead of on the com-
puter screen will leave the user with impressive feelings. At
the same time, augmented reality is unlike mere virtual reality
as users are not able to see and operate any real objects in



(a) By Gourlay et al. [19] (b) By Wolfram et al. [20] (c) By Morphett et al. [18]

Fig. 9. Some existing Turing machine simulator interfaces.

virtual reality, while augmented reality gives users the freedom
to type on a keyboard, coding, and debugging through the
computer screen just like wearing a normal transparent glasses.
Our well-designed interactive interface provides a more re-
alistic and user-friendly platform for students to learn and
explore the fascinating mathematics world of automation and
computational theories. We believe our work can be extended
and well-studied in the following future works to bring the
computational theory teaching industry into an entirely new
AR age, such that every student enrolled in theory classes in
the future will no more think the lecture is boring and abstract,
rather, they will enjoy the new concepts taught through AR.
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