
SurfChessVR: Deploying Chess Game on
Parametric Surface in Virtual Reality

Wanwan Li
University of South Florida

Tampa, Florida, USA
wanwan@usf.edu

Fig. 1. This figure shows a novel gaming interface, SurfChessVR, which deploys chess games on parametric surfaces in Virtual
Reality (VR). Through the parametric modeling approach proposed by us, a traditional chessboard of a plane surface (a) and
(b) can be transformed into an arbitrary parametric surface chessboard automatically generated given a parametric equation
(c) and (d). In this example, the parametric equation represents a saddle surface. Then, after connecting with the Unity Steam
VR plugin, the player wearing Occulus Quest 2 can play this SurfChessVR game in interactive virtual environment (e).

Abstract—This paper proposes SurfChessVR, a novel gaming
interface that deploys chess games on parametric surfaces in
Virtual Reality (VR). Unlike traditional chess in VR where
all chessmen are placed on a plane chessboard, our approach
automatically places chessmen on arbitrary parametric surfaces
such as spheres, torus, cones, etc. More specifically, given a
mathematical equation that describes a parametric surface as
input, our approach automatically generates the chessboard in
the shape of that parametric surface and places the chessmen on
that surface at different squares with corresponding orientations
that align with the surface’s normal directions. In order to deliver
players with immersive gaming experiences of playing chess on
a parametric surface, we implemented a game AI algorithm
called the Min-Max algorithm that enables the computer to game
against the player in VR. Experiment results and user studies
validate the effectiveness and correctness of our approach.

Keywords—parametric modeling, chess game, virtual reality,
interactive interface, game AI, Min-Max algorithm

I. INTRODUCTION

As one traditional abstract strategy board game between two
players that involves no hidden information, chess is one of
the world’s most popular games and is played by millions
of people worldwide today. Chess is not only a symbol of
competition and intelligence, it is also a carrier that carries a
boundless possibility for entertainment. New fashions in chess

games attract growing interest from players with different cul-
tural backgrounds and different ages. Especially, the traditional
forms of chess will no more satisfy the young players who
are from the new age. One example shows the attempts that
players are trying to ”renew” the concept of chess, that are,
the attempts that have been made to translate a flat 8x8 board
into a spherical board [1]. From time to time, people have
been inspired to build spherical boards [2], round chess boards
[3], cylindrical chess boards [4], etc., and figure out how to
play chess on them. At an age without computers, these goals
seem challenging as physically designing different styles of
chess boards takes unignorable expenses, time, manual effort,
and the risk caused by failures. But nowadays, with the help
of computational design, this goal is realizable. Especially,
given the presence of Virtual Reality (VR) technologies that
deliver users immersive interactions, synthesizing chessboards
in different shapes and deploying chess games on different
types of chessboards becomes possible. Therefore, inspired by
this trend of modern chess games, in this paper, we propose
SurfChessVR, a novel gaming interface that automatically de-
ploys chess games on parametric surfaces in VR that demands
minimum manual efforts from the board game designers. Main
contribution of our work include:

Fig. 2. Overview of our technical approach.

• we propose a novel research topic on the parametric
modeling of chessboard geometry that has never been
explored by other researchers before.

• we propose a novel technical approach to automatically
generated the virtual chessboards with different shapes of
parametric surfaces and automatically place chessmen on
that parametric surface with realistic alignments.

• we conduct a series of experiments and user studies
whose results validate the effectiveness and correctness
of our approach. The video recording of experiments
and user studies can be accessed through this URL link:
https://youtu.be/wW5GcbUiQY4

II. RELATED WORK

As the computational power of modern computers is grow-
ing, more and more researchers are implementing various
types of chess games with robust game AI and hardware
supports. In 2008, bontchev et al. [5] implemented a mobile
chess game. Chen et al. [6] developed a remote Chinese chess
game using mobile phone augmented reality. In 2010, Kaur
et al. [7] designed and implemented an artificially intelligent
microcontroller-based chess opponent. In 2012, Li et al. [8]
implemented a Korean chess game by hand gesture recognition
using stereo camera. In 2014, Su et al. [9] implements the
chess game artificial intelligent using mobile robots. Mendes
et al. [10] implemented the hardware system for automatic
and interactive chess board. In 2015, Al et al. [11] designed
and implemented the chess-playing robotic system. Peiravi
et al. [12] designed and implemented an adaptive learning-
based chess game. In 2016, Muji et al. [13] designed and
implemented the electronic chess set. Wu et al. [14] designed
Chinese chess algorithm and implemented the Chinese chess
as a computer game. Li et al. [15] designed and implemented a
personalized interface of Chinese army chess. In 2017, Kim et

al. [16] deviced a real-time VR strategy chess game using mo-
tion recognition. Bhutani et al. [17] designed and implemented
a wireless remote chess playing physical platform. In 2018,
Larregay et al. [18] designed and implemented a computer
vision system for an autonomous chess-playing robot. In 2019,
Yusof et al. [19] implemented collaborative chess game in
handheld devices on augmented reality platforms. Zhong et
al. [20] implemented the chess game in the object-oriented
programming language of C++. Shi et al. [21] designed and
implemented a general chess game system client based on
electron framework. Wang et al. [22] designed and imple-
mented a Chinese chess based on robot arm manipulator.
In 2020, Li et al. [23] implements the Chinese chess game
algorithm based on reinforcement learning. Kolosowski et al.
[24] proposed a collaborative robot system for playing chess.
Zhang et al. [25] designed and implemented an intelligent
Chinese chess system device. However, as far as we know,
there is no existing work that has deployed chess games on
parametric surface-shaped chessboards in virtual reality.

III. OVERVIEW

Figure 2 shows the overview of our technical approach.
Figure 2(a) shows a traditional chess board of a plane surface.
After using the parametric modeling approach proposed by us,
an arbitrary surface chessboard can be automatically generated
given a parametric equation as shown in Figure 2(b). In this
example, input is the parametric equation of a saddle surface.
Then, we propose a mathematical approach to automatically
place the chessmen on the parametric surface so that the
chessmen’s positions align with the centers of squares and the
chessmen’s rotations align with the surface’s normal directions
as shown in Figure 2(c). After the chess game is deployed on
the saddle surface through the proposed parametric modeling
approach, the game starts with an initial state in the user input

automaton as shown in Figure 2(d). Through this deterministic
finite automaton, user interaction is added to this synthesized
chess game. For example, the player can select any white
chessman when the mouse (or VR controller) hangs over
that chessman, and the square under that chessman will be
highlighted as dark green. When the player clicks that dark
green square, hints in light blue (or dark blue) will pop
up to show the valid moves. If the player clicks that dark
green square again, the hints will disappear. Or, if the player
clicks those hints in light blue (or dark blue), that highlighted
chessman will move to those hints correspondingly as shown
in Figure 2(e). After the player finished each move, our
proposed interface will automatically move a black chessman
using a game AI algorithm as shown in Figure 2(f).

IV. TECHNICAL APPROACH

Fig. 3. Chess Matrix

Representation. To simplify
the chess representation, a 2D
character matrix, called chess
matrix, is applied to represent
the current status of a game.
Figure 3 shows an example of
chess matrix that represents the
initialization of the game. A
quadruple of four numbers rep-
resents how to move the chess.
For example, (1, 7, 2, 7) repre-
sents a move to switch the chessman from square [1, 7] to
square [2, 7]. In this way, a linked list of quadruples can be
used for storing all valid moves for the computer or player.
Also, it serves as the fundamental data structure of the min-
max algorithm implemented in this paper for the game AI.

Valid Move Check. In this work, a function is implemented
to check whether it can move a chessman from one square to
another square, say, they are [i0, j0] and [i1, j1] respectively.
Firstly, check whether the chessman standing on [i1, j1] has
the same color as the one on [i0, j0]. This is simply done
by checking the chess matrix that whether two characters on
these two squares share the same case (upper case or lower
case). The same case means the same color and turns out to be
an invalid move immediately. Otherwise, according to various
types of chessmen on [i0, j0], there are various methods to
continue checking whether this is a valid move correspond-
ingly. For example, as shown in Figure 4, in this scenario,
the chessman on [i0, j0] is a Bishop ‘B’ which is highlighted
in a green rectangle, then check whether ∆i = |i1 − i0| is
equal to ∆j = |j1 − j0| which means that this move is on
the diagonal. If it is diagonal, then check whether there is any
chessman standing on the diagonal between [i0, j0] and [i1, j1].
If no one is there, this is a valid move. However, a pawn ’P’ is
standing there which is highlighted in a red circle, so moving
‘B’ from [i0, j0] to [i1, j1] is invalid. Other checking processes
act differently according to the rules of chess game.

Fig. 4. Valid Move Check. This figure shows an example of
checking a move is valid or not. In this case, a chessman of
Bishop ‘B’ on [i0, j0] (highlighted in green rectangle) can not
be moved to [i1, j1] (highlighted as a green dot) as there is a
pawn (highlighted in red circle) standing in between.

Move a Chessman. Similar to the chess game representation
of a 2D character matrix (chess matrix), to represent the status
of the chess game, another matrix of gameobjects is applied to
represent the chessman. If a proposed move (i0, j0, i1, j1) is
valid, then chessman on [i0, j0] can be moved to [i1, j1]. In this
case, chessman [i0, j0] ’s gameobject’s position and rotation
will be updated to the p[i1, j1] and n[i1, j1] respectively
according to the parametric equation shown in the following
section. The chessman [i1, j1]’s gameobject will be destroyed
and chessman [i1, j1]’s gameobject will be assigned as chess-
man [i0, j0] ’s gameobject and chessman [i0, j0] ’s gameobject
will be assigned to null. For example, using the same scenario
shown in Figure 4, this time assumes it is a valid move,
when a player moves the chessman bishop ‘B’ from [i0, j0]
to [i1, j1], our approach modifies the chess matrix by setting
chess [i1, j1]=[i0, j0]=’B’ and [i0, j0]=’ ‘. Meanwhile, update
the virtual scene to synchronize with the updated chess matrix,
that is, update the chessman gameobjects by destroying [i1, j1],
translating and rotating [i0, j0], assigning [i1, j1]=[i0, j0] and
[i0, j0]=null. So, as we can see, this matrix representation of
chess is convenient for implementation.

Min-Max Algorithm. One of the challenging parts of this
proposed work is to automatically determine the next move
for computers using the game AI approach. The easiest way
to do so is using the greedy algorithm. That is to find out which
move can make the computer get the highest score according
to the evaluation of the next status, But actually, this is a naive
approach because it does not consider the opponent player’s
strategy. So here there are many advanced techniques that can
be applied to solve this problem such as deep learning and
reinforcement learning. But in this project, as this game AI
part is not the main contribution of the work, we implemented
a classical but robust game AI algorithm called Min-Max
Algorithm which is widely used in game theory to deal with
two-players game problems. The main idea of the Min-Max
Algorithm is: a computer’s best move needs to make the

Fig. 5. Min-Max Algorithm. This figure shows an example of
using the Min-Max Algorithm in the chess game AI. In this
case, the black player has two options: (1) move the black
pawn one step forward or (2) move the black king one step
forward. Under option (1), either the white king moves one
step forward or rightward, it will be not ”killed”. Then, the
max score for the white player is 0; Under option (2), no matter
how to move the white king, it will be ”killed”. Then, the max
score for the white player is -10; Therefore, according to the
Min-Max Algorithm, the black player will choose option (2)
which results in the min value of the white player’s max score.

opponent player’s next best move worse. To describe this in
another way, if a computer can get a maximal score of 10 and
then it wins this game. On the opposite, if the opposing player
gets a minimal score of -10 then will win. So the computer’s
best move needs to make the opponent player’s next move get
the max score. In a similar way, the opponent player’s best
move needs to make the computer’s next move to get the min
score. Namely, this is called the Min-Max algorithm.

Figure 5 shows the idea of the Min-Max Algorithm. Differ-
ent possibilities are different valid moves or choices that can
be made by the computer or its opponent player. Every time
during the recursion, computer always find the the opponent
player’s max score to return and the opponent player always
find the computer’s min score to return. In order to speed up
the search process, our approach adds the Alpha-Beta Cutoffs.
The idea is that once it finds a max score for the current
move, say alpha, in the later search, it needs to only consider
the move which can help find a higher score than this alpha
value, so all of the other cases will be cut off. The opposite
is also true: It needs to only consider the move which can
help find a lower score than the beta value, so all of the other
cases will be cut off. For the reason that the search space for
chess is too large, and therefore ordinary computers can not
search too deeply. So here, a depth restriction is applied that if
the current depth is larger than any threshold, it returns to the
current scores. However, this restriction disables the computer
to find the global optimum solution at the early stage.

Parametric Surface. One main contribution of this work is
procedurally deploying chess games on parametric surfaces.
Parametric surfaces are mathematically defined with given
parametric equations p(u, v) = (x, y, z) ∈ R3 that projects
parametric space (u, v) ∈ R2 into world space (x, y, z) ∈ R3

so as to generate surfaces and shapes as 3D models. In our
work, the plane surface of chessboard are transformed into
parametric surfaces using parametric equations that takes the
input of the coordinates of the squares, namely, [i, j], which
denotes the ith row and the jth column on the chessboard.
Then, the vertices of the triangle mesh for chessboard square
[i, j] are calculated through following point set S[i, j]:

S[i, j] =

k−1⋃
m=0

k−1⋃
n=0

p(i+
m

k − 1
, j +

n

k − 1
),

where coordinates i and j are integers range from 0 to 7.
Empirically, we set surface precision k = 5. Chessman’s
position on square [i, j] is p[i, j] = p(i+0.5, j+0.5) and the
chessman’s rotation on square [i, j] align with the surface’s
normal directions n[i, j] which is calculated as:

n[i, j] =
(p(i+∆, j)− p(i, j))× (p(i, j +∆)− p(i, j))

|(p(i+∆, j)− p(i, j))× (p(i, j +∆)− p(i, j))|
,

where the numerical partial differentiation step ∆ = 0.001.
In the end, give the up vector u = (0, 1, 0), the chessman on
square [i, j] will rotate along the axis a[i, j] = n[i, j]×u with
the angle of α[i, j] = cos−1 (n[i, j] · u).

V. EXPERIMENT RESULT

In order to validate the effectiveness and correctness of
our approach, we conduct a series of experiments to deploy
chess games on different parametric surfaces. Figure 6 shows
the results that deploy chess game on heightmap parametric
surfaces including (a) plane surface, (b) water wave surface,
(c) sin-cos surface, (d) parabola surface, (e) Gaussian surface,
and (f) helmet surface. Mathematically, let w = 7 denote
the square size, then these heightmap parametric surfaces
can be represented by heightmap function h(u, v) such that
p(u, v) = (wu, h(u, v)/w,wv). Let r denotes the distance
from (u, v) to the center (4, 4) which can be calculated as:

r =
√
(u− 4)2 + (v − 4)2

In Figure 6 (a), heightmap function of plane surface is:

h(u, v) = 0

In Figure 6 (b), heightmap function of water wave surface is:

h(u, v) = 3 cos(2πr/3)/ exp(r2/4)

In Figure 6 (c), heightmap function of sin-cos surface is:

h(u, v) = 4 sin(uπ/4) cos(vπ/4)

In Figure 6 (d), heightmap function of parabola surface is:

h(u, v) = r2/2− 10

(a) plane surface (b) water wave surface

(c) sin-cos surface (d) parabola surface

(e) Gaussian surface (f) helmet surface

Fig. 6. Experiment Results. This figure shows results that deploy chess game on six parametric surfaces including: (a) plane
surface, (b) water wave surface, (c) sin-cos surface, (d) parabola surface, (e) Gaussian surface, and (f) helmet surface.

In Figure 6 (e), heightmap function of Gaussian surface is:

h(u, v) = 20 exp(r2/16)− 10

In Figure 6 (f), heightmap function of helmet surface is:

h(u, v) = 3 sin16((u− 4)π/2) cos16((v − 4)π/2)− r2/2 + 6

As we can tell from the result, the chessboard’s geometry is
correctly generated with these heightmap parametric surfaces
and the chessmen are accurately aligned at the center of each

square and the rotation is along the normal direction. This
proves the correctness of our approach in deploying chess
games on arbitrary smooth heightmap parametric surfaces. As
another application of heightmap parametric surface, digital
terrain with smooth heightmap data can also be taken as the
input of our approach.

However, the heightmap parametric surfaces that are repre-
sented by scalar height field equations (so-called heightmap
equations) are a special branch of the parametric surface

(a) helicoid surface (b) cone surface

(c) sphere surface (d) torus surface

Fig. 7. Experiment Results (Cont.). This figure shows results that deploy chess game on other four different types of parametric
surfaces including (a) helicoid surface, (b) cone surface, (c) sphere surface, and (d) torus surface which are not heightmap-based.

family. More general forms of parametric surfaces are not
only projecting from 2D parameter space to 3D world space
by only adding the height information, but rather, by mapping
any 2D points in parameter space to an arbitrary 3D point in
the world space. As a sequence, the result parametric surface
can be closed surfaces such as spheres and torus. Without
losing generality, we test our approach in deploying chess
games on generalized parametric surfaces that are not based
on heightmap equations. Figure 7 shows the results that deploy
chess game on other four different types of parametric surfaces
including (a) helicoid surface, (b) cone surface, (c) sphere
surface, and (d) torus surface. Let square size w = 7. In
Figure 6 (a), the parametric equation of helicoid surface is:

p(u, v) =
w

2

(
−(v + 1) cos(u

π

4
),−u− 4

2
, (v + 1) sin(u

π

4
)

)
In Figure 6 (b), the parametric equation of cone surface is:

p(u, v) =
w

2

(
(u+

1

4
) cos(v

π

4
), u, (u+

1

4
) sin(v

π

4
)

)
In Figure 6 (c), the parametric equation of sphere surface is:

p(u, v) = 3w
(
cos(v

π

4
) sin(u

π

8
), sin(v

π

4
) sin(u

π

8
), cos(u

π

8
)
)

In Figure 6 (d), the parametric equation of torus surface is:

p(u, v) =
w

2

 (5 + 2 cos(uπ/4)) cos(vπ/4)
(5 + 2 cos(uπ/4)) sin(vπ/4)

2 sin(uπ/4)


As shown in these results, the chessboard’s geometry is

correctly generated with these generalized parametric surfaces
as well and the chessmen are accurately aligned at the center
of each square and the rotation is along the normal direction.
These results prove the correctness of our approach in deploy-
ing chess games on generalized parametric surfaces that are
not based on heightmap equations.

(a) start the chess game (b) select the white horse (c) click the white horse

(d) select the hint square (e) click the hint square (f) move the black pawn by AI

Fig. 8. Interaction Experiment. This figure shows the experiment result that tests a user’s interaction with our chess game
interface. In this case, the chess is deployed on a saddle surface when the game starts (a). Then, subfigures (b)-(f) show the
corresponding effects when the user’s mouse (or VR controller) triggers the following events including (b) select the white
horse, (c) click the white horse, (d) select the hint square, (e) click the hint square, and (f) move the black pawn via game AI.

In order to test the dynamic feature of our approach that
the user can interact with the computer and move the chess
correctly through our proposed interface, we conduct the
experiment to test the user interactions parts and game AI
aspects of our interface. Figure 8 shows the experiment result
that tests a user’s interaction with the computer using our
proposed chess game interface. In this case, the chess is
deployed on a heightmap-based parametric surface: saddle
surface, whose heightmap equation is:

h(u, v) =
1

10

(
(u− 4)2 − (v − 4)2

)
When the game starts, the player selects the white horse

when the mouse (or VR controller) points at it. As shown in
Figure 8(b), the square under the white horse is highlighted
as dark green. As shown in Figure 8(c), when the player
clicks that dark green square, hint squares in light blue pop
up to show the valid moves of this white horse. As shown in
Figure 8(d), when the mouse (or VR controller) points at a
hint square, that hint square is highlighted as light green. As
shown in Figure 8(e), when the player clicks the hint square,
the white horse moves to that hint square correspondingly. As
shown in Figure 8(f), once the player finished each valid move,
the game AI will move the black chessman using the Min-Max
algorithm which moves the black pawn one step forward.

Implementation of the selection mechanism is done by
adding two components to the square’s GameObject which

are Rigidbody and SphereCollider. The radius size of Sphere-
Collider is half of the square size w and the position of the
SphereCollider is exactly the same as the chessman’s position
on that square which is calculated through the parametric equa-
tions. Squares’ color changing is implemented by switching
the predefined materials during the gameplay. For example,
by default, the square’s colors are black or white. After being
selected, they will become dark green or light green. If they
are hints for valid moves, their colors will become dark blue
or light blue. During the gameplay, color changes can help
players distinguish which is the current status of chess squares.

VI. USER STUDY

SurfChessVR is implemented on Unity3D Editor and ex-
ecutes on the Unity3D game engine. Users can play Sur-
fChessVR on a desktop through mouse interactions. In the
meantime, with the SteamVR plugin imported into our project,
users can also play SurfChessVR on VR devices such as
Oculus Quests. We have conducted a preliminary user study
to test our proposed chess gaming interface, SurfChessVR, in
virtual reality. As shown in Figure9, the user plays chess on a
torus surface against the game AI in virtual reality through the
Oculus Quest 2 VR headset and VR controllers. When the user
clicks on the hint squares with her VR controller’s grab pinch
button, that chessman moves to that hint square and ”eats”
the black pawn there. During this user study, we invite this

user to play SurfChessVR chess games with eleven different
chessboard shapes including plane surface, water wave surface,
sin-cos surface, parabola surface, Gaussian surface, helmet
surface, saddle surface, helicoid surface, cone surface, sphere
surface and torus surface which are shown in the experiment
results. Full video recording of the user study can be accessed
through this link [26]. After the study, the user shows a high
evaluation of SurfChessVR and enjoys the interactions of this
interface. She also believes the chessboards generated from
parametric surfaces look very special and believe they can
make chess games gain more popularity among chess fans.

VII. CONCLUSION

In this paper, we propose SurfChessVR, a novel gaming
interface that deploys chess games on parametric surfaces in
Virtual Reality (VR). This is the first research work that applies
parametric modeling techniques to chessboard synthesis and
chess game procedural content generation. More specifically,
our technical approach can automatically generate virtual
chessboards with different shapes of parametric surfaces and
automatically place chessmen on that parametric surface with
realistic alignments. We also validate the effectiveness and cor-
rectness of our approach through a group of experiments and
user studies on virtual reality devices. In future work, we will
explore our interface for generating more complex parametric
surfaces. Especially, we will explore the possibility to extend
our approach to generating rough surfaces which have abrupt
changes in normal directions. Our proposed interface can also
be applied to user studies that evaluate the aesthetics and the
intractability of chessboards with different shapes.

REFERENCES

[1] Chessvariants, “Spherical chess,” https://www.chessvariants.com/
boardrules.dir/spherical.html, Sep 1996.

[2] M. Davis, “Spherical chess,” http://www.endprod.com/chess/sphere.htm,
1976.

[3] ——, “Round chess,” http://www.endprod.com/chess/round.htm, 1976.
[4] Chessvariants, “Cylindrical chess,” https://www.chessvariants.com/

boardrules.dir/cylindrical.html, Sep 1996.
[5] B. Bontchev, “A mobile chess game,” 2008.
[6] L.-H. Chen, C.-J. Yu, and S.-C. Hsu, “A remote chinese chess game

using mobile phone augmented reality,” in Proceedings of the 2008
International Conference on Advances in Computer Entertainment Tech-
nology, 2008, pp. 284–287.

[7] G. Kaur, A. K. Yadav, and V. Anand, “Design and implementation
of artificially intelligent microcontroller based chess opponent,” in
Proceedings of the World Congress on Engineering, vol. 1, 2010.

[8] X. Li and K.-S. Hong, “Korean chess game implementation by hand
gesture recognition using stereo camera,” in 2012 8th International
Conference on Computing Technology and Information Management
(NCM and ICNIT), vol. 2. IEEE, 2012, pp. 741–744.

[9] K.-L. Su, B.-Y. Li, J.-H. Guo, and K.-H. Hsia, “Implementation of the
chess game artificial intelligent using mobile robots,” in 2014 Joint 7th
International Conference on Soft Computing and Intelligent Systems
(SCIS) and 15th International Symposium on Advanced Intelligent
Systems (ISIS). IEEE, 2014, pp. 169–174.

[10] A. R. Mendes, A. M. Mehta, and B. H. Gohil, “Implementation of the
automatic and interactive chess board,” ISOR Jurnal of Electrical and
Electronics Engineering, vol. 9, pp. 1–4, 2014.

[11] F. A. T. Al-Saedi and A. H. Mohammed, “Design and implementation
of chess-playing robotic system,” International Journal of Science,
Engineering and Computer Technology, vol. 5, no. 5, p. 90, 2015.

[12] M. Peiravi, “The design and implementation of an adaptive chess game,”
2015.

Fig. 9. User Study. This figure shows the user’s gameplay
experience with SurfChessVR. In this example, the user plays
chess on a torus surface against the game AI in virtual reality
through the Oculus Quest 2 VR headset and VR controllers.

[13] S. Z. M. Muji, M. H. A. Wahab, R. Ambar, and W. K. Loo, “Design
and implementation of electronic chess set,” in 2016 International Con-
ference on Advances in Electrical, Electronic and Systems Engineering
(ICAEES). IEEE, 2016, pp. 451–456.

[14] G. Wu and J. Tao, “Chinese chess algorithm design and implementation
in the computer games,” in 2016 35th Chinese Control Conference
(CCC). IEEE, 2016, pp. 10 380–10 384.

[15] S. Li, X. Yuan, and K. Cao, “Design and implementation of personalized
interface of chinese army chess,” in 2016 Chinese Control and Decision
Conference (CCDC). IEEE, 2016, pp. 4271–4274.

[16] Y.-K. Kim, Y.-S. Yoon, T.-G. Oh, Y.-H. HwangBo, and J.-H. Hwang,
“Real-time vr strategy chess game using motion recognition,” Journal
of Digital Contents Society, vol. 18, no. 1, pp. 1–7, 2017.

[17] D. Bhutani, Y. Ali, and P. Gupta, “Design and implementation of a
wireless remote chess playing physical platform,” International Journal
of Engineering Research and Technology, vol. 6, no. 09, 2017.

[18] G. O. Larregay, F. L. Pinna Gonzalez, L. O. Avila, and O. D. Morán,
“Design and implementation of a computer vision system for an au-
tonomous chess-playing robot,” 2018.

[19] C. S. Yusof, T. S. Low, A. W. Ismail, and M. S. Sunar, “Collaborative
augmented reality for chess game in handheld devices,” in 2019 IEEE
Conference on Graphics and Media (GAME). IEEE, 2019, pp. 32–37.

[20] Y. Zhong, “Object-oriented implementation of chess game in c++,” in
Journal of Physics: Conference Series, vol. 1195, no. 1. IOP Publishing,
2019, p. 012013.

[21] L. Shi, S. Li, D. Lei, and J. Bo, “Design and implementation of a general
chess game system client based on electron framework,” in 2019 IEEE
International Conferences on Ubiquitous Computing & Communications
(IUCC) and Data Science and Computational Intelligence (DSCI) and
Smart Computing, Networking and Services (SmartCNS). IEEE, 2019,
pp. 696–701.

[22] J. Wang, X. Wu, T. Qian, H. Luo, and C. Hu, “Design and implementa-
tion of chinese chess based on manipulator,” in 2019 IEEE 3rd Advanced
Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC). IEEE, 2019, pp. 1687–1690.

[23] M. Li and W. Huang, “Research and implementation of chinese chess
game algorithm based on reinforcement learning,” in 2020 5th Interna-
tional Conference on Control, Robotics and Cybernetics (CRC). IEEE,
2020, pp. 81–86.

[24] P. Kołosowski, A. Wolniakowski, and K. Miatliuk, “Collaborative robot
system for playing chess,” in 2020 International Conference Mecha-
tronic Systems and Materials (MSM). IEEE, 2020, pp. 1–6.

[25] J. Zhang and H. Yin, “Design and implementation of intelligent chinese
chess system device,” in 2020 International Conference on Culture-
oriented Science & Technology (ICCST). IEEE, 2020, pp. 558–563.

[26] A. Author(s), “Surfchessvr: Deploying chess game on parametric surface
in virtual reality (video),” https://youtu.be/ee40Q4ibsf8, 2023.

