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Fig. 1. Given a virtual construction site as input (a), after pre-processing steps (b-d), our optimization-based approach synthesizes
personalized training scenarios by adding common construction hazards and generating training routes. (e) Users are guided through
a generated route (green) and trained to inspect hazards in virtual reality.

Abstract—Construction industry has the largest number of preventable fatal injuries, providing effective safety training practices can
play a significant role in reducing the number of fatalities. Building on recent advancements in virtual reality-based training, we devised
a novel approach to synthesize construction safety training scenarios to train users on how to proficiently inspect the potential hazards
on construction sites in virtual reality. Given the training specifications such as individual training preferences and target training time,
we synthesize personalized VR training scenarios through an optimization approach. We validated our approach by conducting user
studies where users went through our personalized guidance VR training, free exploration VR training, or slides training. Results
suggest that personalized guidance VR training approach can more effectively improve users’ construction hazard inspection skills.

Index Terms—virtual reality, construction safty, training, optimization, personalization

1 INTRODUCTION

In the construction industry, labor costs constitute 30-50% of total
project costs [34]. Since construction companies typically only have a
2-3% profit margin, managing labor costs to enhance productivity while
ensuring safety is critical [18]. In the current industry, lack of skilled
labor is the main reason for cost overruns [44], loss of productivity [23],
frequent safety incidents [2], schedule overruns [10], and decline in
quality performance [22]. To improve their skills, construction work-
ers must be trained; however, the traditional one-size-fits-all training
approach has failed to fully prepare workers for current worksite chal-
lenges [19]. Therefore, developing personalized training programs
for construction workers will have significant impacts in construction
industry. It becomes pertinent to find efficient and effective safety
training programs to amplify construction industry’s labor supply.

Given the emerging technologies in the virtual reality industry, VR
provides a practical platform to train people in a safe and efficient
manner through serious virtual training tasks. Several research studies
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indicated that virtual reality, to some extent, can be a substitute for
real-world task training [25, 29, 32, 33, 39]. Therefore, it is possible to
leverage virtual reality to conduct construction safety training which is
not easy to be achieved in reality [42]. Besides, compared to real-world
training tasks, highly immersive virtual reality training can be more
engaging through users’ interactions or involvements [4, 48], injury-
free [6, 13, 15] but stressful enough through alerts [12, 20, 36], enabling
trainees to step forward easily and improve their skills efficiently.

Our work is inspired by prior works which use immersive virtual
scenarios for simulating work processes on construction sites [1, 14, 35,
37,40]. In contrast to the prior works which employ manually-designed
construction scenarios, we devise an optimization-based approach to
automatically synthesize personalized safety training scenarios to im-
prove the users’ skills in inspecting hazards on construction sites in
virtual reality. As shown in Figure 1, given the training specifications
such as an individual’s training preferences and target training time, our
approach automatically synthesize corresponding training scenarios
through the simulated annealing method [43]. To validate the efficacy
of our approach, we developed several virtual construction sites and
conducted a series of user studies to analyze the users’ performances
before and after the VR training. Our major contributions include:

• Creating virtual construction sites with different types of common
hazards and implementing a user-friendly interactive interface for
construction safety training in virtual reality.



Fig. 2. Overview. (a) We pre-evaluate users’ skills in identifying hazards on construction sites. (b) According to their performances in pre-evaluations,
we synthesize personalized training scenarios to improve the users’ weaknesses. (c) Users are trained through those synthesized training scenarios.
(d) We post-evaluate the users’ performance through the same tasks in pre-evaluation to measure their improvement.

• Devising an optimization-based approach to synthesize person-
alized training scenarios, which comprise navigation paths and
hazard inspection tasks, for achieving specific training targets.

• Validating the effectiveness of our personalized guidance VR
training scenarios through user studies and statistical analysis.

2 RELATED WORK

Virtual Construction Safety Training. Conventional construction
safety training approaches share a common drawback of the lack of
trainees’ engagement [7]. More innovative approaches and bench-
marks [5, 28] are presented to improve construction safety training. To
enable trainees to have control over their progress and achieve personal
instructions in a safe environment, more attention is given to immersive
virtual construction safety training [16, 26, 27]. In recent years, as
virtual reality technologies become widespread, Sacks et al. [40] indi-
cated that virtual construction safety training is feasible and effective,
especially in terms of workers’ learning, identifying, and inspecting
construction safety risks. Aati et al. [1] developed an immersive virtual
platform for enhancing the training for work zone inspectors, which is
capable of replicating the experience of an inspector driving through a
work zone in a safer, cheaper, and quicker way. Through the simulation
of VR-based safety training programs developed by Zhao et al. [50],
users can effectively promote their abilities for hazard inspection. On
the other hand, augmented reality and augmented panoramas of reality
technologies are applied to virtual construction safety training [16] and
assembly training [45] to achieve immersive training experiences.

Furthermore, Eiris et al. [14] developed and compared two immer-
sive virtual training platforms for hazard inspection, among which
one is based on virtual reality while another is based on a 360-degree
panoramic setup. Those works plot a trend that immersive virtual
construction safety training is gaining popularity.

Personalized Virtual Training Synthesis. Most of the existing con-
struction safety VR training programs work through repeatedly rehears-
ing similar tasks pre-programmed in the VR applications [50], which
may lead to concerns on training effectiveness as real-world hazards
occur randomly. Therefore, randomness was a consideration in the
system proposed by Xie et al. [47] for creating many variations of the
training scenarios. However, randomized hazard simulations make
it non-trivial and technically challenging for the designers to create
personalized training scenarios for VR training. As inspired by the
recent works which successfully synthesized personalized training sce-
narios to help users improve certain skills such as driving skills [25]
and wheelchair control [29], optimization techniques are applied to
substitute manual configurations in creating effective training programs.
Emerging optimization-based approaches such as optimization for ex-
ertion games [30, 46, 49], optimization for wayfinding design proposed
by Huang et al. [21], and optimization for personalized functional
workspace scene layout synthesis proposed by Liang et al. [31] show
that stochastic optimization-based approaches are efficacious for synthe-
sizing realistic virtual scenarios. Motivated by these works, we devise
an optimization-based approach to synthesize personalized construction
safety training scenarios for VR training.

3 OVERVIEW

As shown in Figure 2, we show the construction sites on our VR
platform and synthesize the training scenarios where the users are

pre-evaluated. A training scenario includes a route for users to navi-
gate through (green curve) and a sequence of nearby hazards (colored
regions) that need to be correctly identified by the users. Through opti-
mizing the navigation route along with the sequence of nearby hazards
in a fully automatic manner, our approach synthesizes the personalized
training scenarios to improve the user’s skills which are identified as
weaknesses in the pre-evaluation. For example, a synthesized training
will contain more fall hazards in case the user is not able to identify
fall hazards in the pre-evaluation. In the end, we validate the effec-
tiveness of our synthesized training scenarios by comparing the users’
performances in the post-evaluation with the their performances in the
pre-evaluation and testing the improvement in users’ performances
statistically. We validate that our approach can effectively improve the
trainee’s skills in inspecting construction safety hazards.

4 TRAINING SCENARIO SYNTHESIS

Hazard Types. According to the Center for Construction Research
and Training [41], major construction hazards types include (a) Struck-
by Hazards, (b) Fall Hazards, (c) Caught-In/between Hazards, and (d)
Electrical Hazards as depicted in Figure 3.

In our optimization approach, we regard the struck-by hazards as dy-
namic hazards and other types of hazards as static hazards or potential
hazards. Noted that this classification only applies to general situations.
More strictly, in some special situations, struck-by hazards are not the
only dynamic hazard. For example, sometimes caught-in/between haz-
ards are dynamic as well when they are related to moving mechanical
parts, or electrocution when the contact of a boom vehicle with a power
line can also have a dynamic nature. However, in our approach, in
order to separate the ”moving and obvious” hazards that users need to
avoid from those ”hidden or potential” hazards that users to identify,
we tag those moving hazards as ”dynamic” and those staying hazards
as ”static”. Our approach is scalable to consider more complex train-
ing scenarios with both dynamic and static features. The following
elaborates the four types of common hazards for construction safety
inspection training:

• Struck-by Hazards. As dynamic hazards, struck-by hazards are
simulated through mechanical animations. During the VR train-
ing, struck-by hazards can directly run into the users when they
are passing nearby.

• Fall Hazards. Refer to the hazards that could result in accidental
falls. Examples include untied workers, no guardrail protection
on hight, ladder hazards, and tripping hazards.

• Caught-In/between Hazards. Refer to the hazards that could crush
people by objects from a side, such as cave-in hazards.

• Electrical Hazards. Refer to the hazards caused by electrical com-
ponents, such as overhead power lines and no clearance between
the power line and scaffold.

4.1 Cost Functions
In our approach, a training scenario is synthesized as a route and several
hazards along the route. A route starts at the entrance of a construction
site and ends at a random position. Route R along with H which is a list
of hazards that users will experience sequentially are optimized with
respect to the total cost function Ctotal(R,H):



(a) Struck-by Hazard. (b) Fall Hazard.

(c) Caught-in/between Hazard. (d) Electrical Hazard.

Fig. 3. Examples of common hazards. (a) A struck-by hazard caused
by the swing of excavator. (b) A fall hazard caused by missing guardrail
protections. (c) A caught-in/between hazard caused by objects which
are too close to a cave’s edge. (d) An electrical hazard caused by an
electrical component such as a light pole.

Ctotal(R,H) = wDCD(R,H)+wSCS(R,H)+wTCT(R,H), (1)

where the dynamic hazard cost CD(R,H) encodes how likely the user
will encounter dynamic hazards such as struck-by hazards H when
navigating along the route R; the static hazard cost CS(R,H) encodes
the user’s preferred training targets with respect to the user’s proficiency
in identifying different types of static hazards such as fall, caught-
in/between and electrical hazards; and the training time cost CT(R,H)
encodes the target amount of training time. wD, wS, and wT represent
the respective blending weights of the cost terms.

Dynamic Hazard Cost. During training process, dynamic hazards
such as struck-by hazards are simulated through mechanical animations
to mimic the vital accidents that are likely to happen during the con-
struction process in the real world. The spatial distribution of dynamic
hazards affects the difficulty of safety inspection training. For example,
if the dynamic hazards are present near the navigating route, it is more
challenging for the user to identify other nearby static hazards while
avoiding being struck by the dynamic hazards. On the other hand, if
the route is passing through spaces without dynamic hazards, it is much
easier for the user to focus on inspecting the static hazards, in this case,
the training is less challenging. Let D(R,H) be a function proportional
to the conditional probability of the occurrence of any dynamic hazard
H that may happen along a route R, we evaluate the dynamic hazard
cost function CD(R,H) by measuring the difference between that esti-
mated probability D(R,H) and user’s target occurrence probability of
dynamic hazards λD as:

CD(R,H) = 1− exp(−
(

D(R,H)−λD
σD

)2
), (2)

where we empirically set σD = 0.25.

Fig. 4. Dynamic hazard notations.

Hazard Probability. Dynamic
hazards involve moving objects
on the virtual construction site,
we introduce the conditional
probability to evaluate the prob-
ability of the occurrence of haz-
ardous accidents. Given any
point r on route R, let d(r,Hi)
denote the distance between r
and the center of a hazard Hi.
Let δ (Hi) denote the affecting range of hazard Hi. Then, given the

condition that if point r is close enough to the hazard Hi, namely,
d(r,Hi) < δ (Hi), we define the conditional probability of the occur-
rence for each hazard Hi as Pr(Hi|d(r,Hi)< δ (Hi)). So, we evaluate
the overall probability D(R,H) that any dynamic hazardous events may
happen along route R as a function proportional to the summation of
line integral for the conditional probability of each hazard Hi along
route R:

D(R,H) =
k
|R|

|H|

∑
i=1

∫
R

Pr(Hi|d(r,Hi)< δ (Hi))dr, (3)

where the number |H| is the total amount of synthesized hazards H; the
|R| is the total length of the route calculated through the line integral
along the route R; and k is a fine-tuned scale factor to adjust the overall
dynamic hazardous probability returning the values evenly distributed
within [0,1]. Empirically, we set k = 0.3.

We simulate the dynamic hazards through periodic motions of a
vehicle, a truck, or an excavator. Let Td(Bi,Hi)<δ (Hi) denote the period
time that dynamic hazard Hi’s corresponding moving object (e.g., a
vehicle.)’s bounding box Bi enters Hi’s affecting range δ (Hi). Let
Td(Bi,Hi)≥δ (Hi) denote the period time that Hi’s moving object’s bound-
ing box Bi is outside the affecting range. Then, the dynamic hazard
Hi’s conditional probability Pr(Hi|d(r,Hi)< δ (Hi)) is:

Pr(Hi|d(r,Hi)< δ (Hi)) =
Td(Bi,Hi)<δ (Hi)

Td(Bi,Hi)<δ (Hi)+Td(Bi,Hi)≥δ (Hi)
, (4)

where r is the position of an arbitrary point on route R’.

Fig. 5. Static hazard notations.

Static Hazard Cost. Given
user’s performance in the pre-
evaluation, we synthesize per-
sonalized training scenarios to
improve the specific skills that
the user shows weaknesses. In
other words, we want to im-
prove the user’s skills of inspect-
ing certain types of static haz-
ards. More specifically, given M different types of static hazards, let
the target occurrence probability for the jth type of hazard be λ j , where
j = 1,2, ...,M. A large λ j means that static hazards of the jth type
appear more frequently in the training scenario. We encode such tar-
get occurrence probabilities through the static hazard cost function
CS(R,H):

CS(R,H) = 1− exp(−
(

S(R,H)

σS

)2
), (5)

where we empirically set σS = 0.25. S(R,H) measures the difference
between the probabilities of different types of hazards appearing near
the route R and the target occurrence probabilities:

S(R,H) =
1
M

M

∑
j=1

(
k
|R|

|H|

∑
i=1

∫
R

Fj(r,Hi)dr−λ j

)2

, (6)

where the hazard score function Fj(r,Hi) returns 1 when the hazard
Hi appears within the route point r’s nearby region and Hi belongs to
the jth type of static hazard; Otherwise, it returns 0. |H| denotes the
total amount of synthesized hazards H. |R| is the total length of the
route R. k is a scaling factor for adjusting each term value to be evenly
distributed between 0 and 1. Empirically, we set k = 0.2.

Training Time Cost. The training time cost function CT(R,H) mea-
sures the difference between the estimated training time T (R,H) navi-
gating through the route R and the target training time ρT:

CT(R,H) = 1− exp(−
(

T (R,H)−ρT
σT

)2
), (7)

where we empirically set σT = 2ρT. The total training time T (R,H)
includes the amount of time for navigating along the route R and the
amount of time for inspecting all hazards:



(a) The 1st iteration. (b) The 100th iteration. (c) The 200th iteration. (d) The 500th iteration (Result).

Fig. 6. An example of the optimization process. Green curves are the synthesized navigation routes. (a) The route is initialized at the entrance of the
construction site. Throughout the iterations, vertices are randomly added to, replaced by, or removed from the current navigation routes. Different
types of hazards (colored in red, blue, yellow, or green) are randomly added, replaced, or removed. Figure (b-d) shows the intermediate results
generated through the optimization process. Figure (d) shows the result of the final synthesized training scenario.

T (R,H) = k1
1
v

∫
R

dr+ k2

|H|

∑
i=1

t(Hi), (8)

where |H| is the total number of synthesized hazards H. Pre-defined
constant v is the users’ default navigation speed. The line integral
along the route returns the total length of the route, which is divided by
the constant velocity to give the time for traversing the route R. t(Hi)
is the estimated time to finish inspecting hazard Hi. By setting up a
timer in the program, we count the average time taken by the users for
identifying each type of hazard according to the statistical analysis of a
pilot study. For more details, please refer to the supplementary material.
k1 and k2 are two balancing factors used to balance the importance
of the two considerations: path navigation time and hazard inspection
time. During the training, users are prompt to specify the hazards
while navigating. As navigation time plays a more important role in
estimating the overall training time, we empirically set a larger k1 = 0.8
and a smaller k2 = 0.2.

4.2 Optimization
Given the training specifications such as the total training time and
the target occurrence probabilities of different types of hazards, our
approach synthesizes a navigation route R and the hazards list H by
optimizing with respect to the total cost function.

Fig. 7. A work sign.

To synthesize realistic navigation routes, we
generate a navigation mesh on the input vir-
tual construction site. We randomly pick some
points of interest within the scene and put signs
(work ahead signs indicating hazards) at those
random points. In this way, the training routes
can be assembled through those shortest nav-
igation paths between every two signs. Such
configurations form a navigation graph struc-
ture where the signs are the vertices and the
navigation paths connecting two signs are the
edges connecting two vertices. Empirically, we
formalize the navigation graph as a k-regular
graph [38] with k-shortest distance navigation paths connecting every
two vertices [8], where we set k = 4. Hereby, a synthesized route R
consists of an arbitrary number of vertices and the edges connecting
every two adjacent vertices.

As shown in Figure 6, the initialization of the route R contains
only one vertex, which represents both the starting point and ending
point, and does not constitute any edge. This starting point corresponds
to the location of the construction site’s entrance. We formulate the
optimization problem as a graph searching problem by employing the
Markov chain Monte Carlo method [17] to search for a solution that
minimizes the total cost function. Given any randomly chosen vertex v
on the current route R, a new route R′ is randomly proposed within the
solution space through one type of moves described as follows:

• Add a Vertex: a random vertex v′ adjacent to v is added to the
current route R to create a proposed route R′.

• Remove a Vertex: the vertex v is removed from the current route
R to create a proposed route R′ while keeping the connectivity.

• Modify a Vertex: the vertex v is replaced by a random vertex v′
adjacent to v to create a proposed route R′.

Similarly, given the current list of hazards H, a new list of hazards H ′
is proposed by randomly searching within the solution space through
three types of moves:

• Add a Hazard: a random hazard is added to the current list of
hazards H to create a proposed list of hazards H ′.

• Remove a Hazard: a random hazard is removed from current list
of hazards H to create a proposed list of hazards H ′.

• Modify a Hazard: a random hazard in the current list of hazards
H is replaced by another random hazard not in the current list to
create a proposed list of hazards H ′.

After generating the proposed route R′ and proposed hazards H ′, our
approach uses the Metropolis criterion of the simulated annealing tech-
nique [11, 24] to determine the acceptance probability Pr(R′,H ′|R,H)
for accepting the proposed route and hazards:

Pr(R′,H ′|R,H) = min(1,
f (R′,H ′)
f (R,H)

), (9)

where f (R,H) is a Boltzmann-like objective function encoding the
total cost function:

f (R,H) = exp(−1
t

Ctotal(R,H)), (10)

where t is the temperature parameter of simulated annealing, which
decreases gradually throughout the optimization. As the temperature t
decreases over iterations, the optimizer becomes less aggressive and
more greedy. By the end, as the temperature drops to a low value
near zero, the optimizer tends to accept better solutions only. We
empirically use temperature t = 1.0 at the beginning of the optimization
and decrease it by 0.2 every 100 iterations until it reaches zero. The
optimization process is terminated if the total cost change is smaller
than 3% over the past 50 iterations.

Parameter Settings. Unless otherwise specified, we set the training
time cost’s weight wT = 0.2, dynamic hazard cost’s weight wD = 0.4,
and the static hazard cost’s weight wS = 0.4. We set an overall training
time ρT = 10 minutes as a soft regularization term to avoid overly
short or long training. The setting will result in a synthesized training
scenario comprising a route with a total length of about 400m to 500m
(2 to 4 minutes walking distance) and 6 to 12 selected hazards nearby
the route. During the training, the user may use the controller’s speed-
up button to increase the navigation speed so that to shorten the training



(a) A route with a few hazards. (b) A route with more fall hazards. (c) A route with more caught-in hazards.

(d) A route with more electrical hazards. (e) A route with more struck-by hazards. (f) A route with all types of hazards.

Fig. 8. Synthesized training scenarios on the same construction site. Green curves are the navigation routes. Six different scenarios are shown,
including (a) a route passing through a few hazardous regions; (b) a route passing through more regions with fall hazards (blue); (c) a route passing
through more regions with caught-in/between hazards (yellow); (d) a route passing through more regions with electrical hazards (green); (e) a route
passing through more regions with struck-by hazards (red); and (f) a route passing through regions with all types of hazards.

time. Figure 8 shows some training scenarios synthesized with these
parameter settings on a construction site. Please refer supplementary
material for synthesized training scenarios on another construction site.

Personalized Training Targets. As shown in Figure 8, different
target occurrence probabilities of different types of hazards are applied
for generating different training scenarios on a construction site. As
discussed in Section 4.1, adjusting the target occurrence probability λ j
for each type of hazard will synthesize training scenarios with different
emphases on the types of hazards present. Intuitively, if a user is weak
in identifying a certain type of hazard in the pre-evaluation, we then
synthesize virtual training scenarios containing more of that type of
hazards to reinforce the user’s inspection skill correspondingly.

To demonstrate the capability of our optimization-based approach
for synthesizing different training scenarios focusing on different haz-
ard types, we manually specify six different personalized preference
parameter settings for synthesizing the results shown in Figure 8. Note
that, in practice, such personalized parameters can instead be estimated
from a user’s performance in the pre-evaluation.

We specify a low occurrence probability of a type of hazards as 0.1
and a high occurrence probability as 0.9. As specified in Equation 2,
λD is the user’s target occurrence probability of dynamic hazards. As
specified in Equation 6, λF denotes the target occurrence probability
for fall hazards; λC denotes that for caught-in/between hazards; and
λE denotes that for electrical hazards. The following scenarios can be
synthesized with different settings:

• A Few Hazards: A route with a few hazards: λF = λC = λE =
λD = 0.1.

• More Fall Hazards: A route with more fall hazards: λF = 0.9,
λC = λE = λD = 0.1.

• More Caught-in/between Hazards: A route with more caught-
in/between hazards: λC = 0.9, λF = λE = λD = 0.1.

• More Electrical Hazards: A route with more electrical hazards:
λE = 0.9, λF = λC = λD = 0.1.

• More Dynamic Hazards: A route with more dynamic (struck-by)
hazards: λD = 0.9, λF = λC = λE = 0.1.

• All Types of Hazard: A route with a larger number of all types of
hazards: λF = λC = λE = λD = 0.9.

Figure 8 shows the synthesis results with the corresponding type(s) of
hazards emphasized. Note that in our user study experiments, for those
users from the personalized VR training group, the target occurrence
probabilities were computed according to how many mistakes the users
had made for identifying each type of hazards in the pre-evaluation
phase. Section 5 contains more details.

5 USER STUDY EXPERIMENTS

5.1 Implementation
We implemented our optimization-based approach for synthesizing
VR training scenarios using C# and and the Unity game engine. The
optimization was performed on a PC with 64 GB RAM and a 3.60Hz
Intel(R) Core i7-9700K CPU processor. The synthesized VR training
scenarios were deployed on an Oculus Quest 2 virtual reality headset
which was used for user study experiments.



(a) Construction site 1 (a town house). (b) Construction site 2 (a shopping center). (c) Construction site 3 (a campus).

Fig. 9. Three virtual construction sites used for our user study. (a) Construction site 1 is used for pre-training. (b) Construction site 2 is used for VR
training. (c) Construction site 3 is used for pre- and post-evaluation. By using different construction sites for training and evaluations, we avoid biases
in the user study that users might repeat similar tasks in VR training that also appeared in evaluations if both scenarios were synthesized on the
same construction site.

We conducted user study experiments to measure the effectiveness of
the construction safety virtual training scenarios synthesized with our
approach. Each user study consists of four sessions: (1) pre-training,
(2) pre-evaluation, (3) training, and (4) post-evaluation. As shown
in Figure 9, we designed three different construction sites applied to
different sessions. The pre-training was performed on construction site
1. The VR training scenarios were synthesized on construction site
2. The pre-evaluation and the post-evaluation share the same training
scenario synthesized on the construction site 3.

Participants. We recruited 45 participants among whom most were
college students aged between 22 and 35 with an average age of 28.3.
The ratio of male to female participants is 1.12. They were randomly
recruited from different majors such as electrical engineering, com-
puter science, data science, arts, etc. All of them had not received any
construction safety training before. To compare the effectiveness of
our synthesized personalized VR training with other types of training,
the participants were randomly and evenly separated into three groups:
one was the control group using slides training; one was the free explo-
ration VR training group; and the remaining one was the personalized
guidance VR training group.

5.2 Pre-Training
To mitigate the negative bias of user study results among the users who
were not familiar with VR controllers, we prepared a pre-training ses-
sion, which was a short warm-up training session, to get users familiar
with how to use VR controllers correctly. During this session, the users
from all groups were put into the first construction site with no perfor-
mance evaluations recorded. The goal of pre-training was to let a user
practice two basic operations: navigation control and answer selection.
As shown in Figure 11, (a) navigation control operations were based
on clicking a speed button on the left-hand controller. The operations
included (1) start moving (one click), (2) stop moving (another click),
and (3) speeding-up (holding the button down while moving).

When the user entered any hazardous region, the user would be asked
to select the identified hazard type by clicking on a button showing
the right hazard type choice (see Figure 11(b)) using the front trigger
on the right-hand controller. The system would then record the user’s
choice. As the user indicated familiarity with the navigation control
and answer selection, the user stopped the pre-training session. The
user was then ready for the next training session.

5.3 Pre-Evaluation
The pre-evaluation is synthesized on the third construction site and
optimized with the parameter settings: All Types of Hazard as specified
in Section 4.2. In this session, users from all three groups are put into
the same training scenario to evaluate their background knowledge of
construction safety. Users who have no background in construction
safety are encouraged to intuitively select the answers. As the accuracy
of identifying different types of potential hazards is crucial for evalu-
ating safety training effectiveness, we track the user’s answers during
the evaluation and compare their answers with the correct answers, the
numbers of the mistakes that users have made for each type of hazards

Fig. 10. Navigation approach of the free exploration VR training. Left
controller’s lightsaber is used to teleport to any location in the scene.
The speed button on the left controller and the selection button on the
right controller worked like those in the pre-training program as shown in
Figure 11. In the example shown, the user was about to navigate to the
anchor point highlighted as a blue shining pillar.

are counted. Please refer to the supplementary material for detailed
evaluation tasks.

5.4 Training
There were three training conditions, which were experienced by the
three groups of participants, respectively.

Slides Training. Under this training condition, the 15 participants
from the control group were not trained using the synthesized train-
ing scenarios in the virtual scene. Instead, they were taught about
fundamental construction safety knowledge through a short lecture
presentation using slides. On the slides, there were real-world pictures
showing examples of different types of hazards. During the presenta-
tion, a lecturer carefully went through each slide and explained each
type of hazard. At the same time, the participants were encouraged to
ask questions to make every key point clear. By the end of the training,
the lecturer gave a Q&A session to make sure the participants fully
understand the content covered in the lecture and were ready for the
post-evaluation. Please refer to the supplementary material for details
about the content of the lecture slides.

Free Exploration VR Training. Different from the control group
without VR training, the 15 participants from the free exploration VR
(FE-VR) group were trained with VR training scenarios synthesized on
construction site 2 and optimized with the All Types of Hazard param-
eter settings as specified in Section 4.2. However, in this case, users
did not navigate the construction site through the routes synthesized
with our approach. Rather, they had the freedom to navigate arbitrarily
in the scene by themselves. As shown in Figure 10, users can use the
lightsaber shot from their left controller to teleport to any position in
the scene. This navigation approach mimic the conventional and free
exploration VR training programs commonly used [40, 50]. As guid-
ance from an expert leads to a greater learning gain when compared
to users’ playing alone [3], we incorporate the instructor during the
free exploration VR and personalized guidance VR training as well.
During the free exploration VR training, the instructor would ask the
users to slow down and inspect if there was any hazard around them.
The instructor would explain why there were such types of hazards by



(a) Controllers. (b) Answer selection.

Fig. 11. Two operations on the controllers: (a) the left controller’s button
is used to control the navigation speed while the right controller’s button
is used to select the correct answers. (b) Four answer buttons popped
up after the user entered a hazardous region. After a click of right front
trigger, selected answer will be submitted.

pointing out the hazardous objects in VR. Sometimes if there was no
obvious hazard around, the instructor still asked users whether there
were any hazards. If the answer was yes, the instructor would correct
the users’ misunderstanding by explaining why there was no potential
hazard. The maximum training time for the free exploration VR group
was 15 minutes, which was 50% longer than the average training time
for the personalized VR group which took about 10 minutes.

Personalized Guidance VR Training. Different from the free explo-
ration VR (FE-VR) training group, the 15 participants of the personal-
ized guidance VR (PG-VR) training group were trained with training
scenarios synthesized based on their performance in the pre-evaluation.
Given different parameters settings defined in Section 4.2, the users
would be trained by different personalized training scenarios synthe-
sized according to how many mistakes they have made for each type
of hazards during the pre-evaluation. More specifically, the parameter
settings, namely, λF, λC, and λE, were calculated by the users’ mistake
rates for identifying each type of hazards respectively. For example,
for detecting fall hazards, if the user got 3 out of 4 incorrect answers
in pre-evaluation, then λF = 3/4 = 0.75. Our optimization approach
would then run according to the parameter settings computed this way
to synthesize the personalized guidance VR training scenarios. Note
that both free exploration and personalized guidance VR training sce-
narios were synthesized on construction site 2. By doing so, we avoided
the similarity of the training scenarios with the scenario used in pre-
and post-evaluation, which is synthesized on construction site 3.

5.5 Post-Evaluation
To investigate whether the users’ accuracy in identifying different types
of hazards had improved after going through different training condi-
tions, the same tasks in the pre-evaluation were assigned to the users
again in a post-evaluation session. In this session, the instructor gave
no hints or suggestions to the users. Similar to the pre-evaluation, the
correctness of the users’ answers was evaluated. After the users com-
pleted the assigned post-evaluation tasks, the users were prompted to
complete a questionnaire. The questionnaire included different ques-
tions for feedback on the virtual evaluation tasks, virtual training tasks
(if applicable), and the effectiveness of our training programs.

6 RESULTS AND DISCUSSION

Figure 12 shows the error bar plots of the number of mistakes users
made on each type of hazard during the pre- and post-evaluation.
Darker colors represent the average number of mistakes made in the
pre-evaluation, while the lighter colors represent those in the post-
evaluation. Different types of hazards are represented with different col-
ors: blue denotes the fall hazards, orange denotes the caught-in/between
hazards, and green denotes the electrical hazards. We analyze the re-
sults of users’ accuracy in hazard inspection from the pre- and post-
evaluations. Please refer to Figure 5 in supplementary material for the
number of mistakes made by each participant.

We compare the difference between users’ improvements from slides
training group, free exploration VR training group, and personalized
guidance VR training group. Note that during our synthesized training,
users were prompted to avoid the dynamic hazards (i.e. struck-by
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(a) Slides group. (b) FE-VR group. (c) PG-VR group.

Fig. 12. Inspection errors. These error bar plots show the average
number of mistakes users made on inspecting each type of hazard
during the pre- and post-evaluation. Darker colors represent the number
of mistakes made in pre-evaluation while lighter colors represent those in
post-evaluation. Blue, orange, and green colors denote the errors made
on inspecting fall, caught-in/between, and electrical hazards, respectively.

hazards). If the user is not able to avoid them on time, there will be
warnings popped up to show that they were struck by the dynamic
hazards. In the preliminary test of our VR training program, we realize
that the dynamic hazards designed in this way were very obvious to be
identified due to their movements and there was generally no difference
in the user performance in identifying them before and after training.
So, we did not count the number of errors related to dynamic hazards.

Fig. 13. Users’ improvement.

Statistical Analysis. Given the exper-
imental results, we evaluate users’ im-
provements according to the reduction
in the number of mistakes they have
made in the pre-evaluation and the post-
evaluation. As shown in Figure 13, the
improvements of users from different
groups are represented with different
colors, among which the slides train-
ing group (Slides), free exploration VR
training group (FE-VR) and personal-
ized guidance VR training group (PG-
VR) are colored as blue, orange and
green, respectively. According to the
descriptive statistics, the total average improvement for the slides group,
free exploration VR group, and personalized guidance VR group are
1.13, 2.13, and 4.66, respectively. In general, users from all three groups
have improved their accuracy in identifying different types of hazards.
On average, the VR training groups improve more than the slides group,
and the personalized guidance VR training group improves more than
the free exploration VR training group. According to the descriptive
statistics for each type of hazard, for those users from the slides group,
the average improvement in inspecting the fall hazards, the caught-
in/between hazards, and the electrical hazards are 0.2, 0.13, and 0.8,
respectively. Similarly, for FE-VR group, the average improvements
are 0.73, 0.53, and 0.86, respectively. For PG-VR group, they are 0.8,
1.87, and 2, respectively.

Furthermore, we analyze whether there is any statistically significant
difference between the improvement made by the users from the three
groups. We applied two factors ANOVA tests (with Scheffe test as a
post hoc test) [9] for users’ improvement on each type of hazard. Using
α = 0.05 (95% confidence interval), we obtain the ANOVA test results
showing that among the three different groups, p = 0.00026 < 0.05.
Therefore, with a 95% confidence level, we reject the null hypothesis
that there is no statistically significant difference between the improve-
ments made by the users from different groups. Furthermore, according
to a post hoc test, when comparing the FE-VR group with the slides
group, we obtain p = 0.47 > 0.05; when comparing the PG-VR group
with the FE-VR group, we obtain p = 0.012 < 0.05; when comparing
the PG-VR group with the slides group, we obtain p = 0.0004 < 0.05.
Therefore, with a 95% confidence level, we conclude that the users



Fig. 14. A user navigation example. A user from the free exploration VR
group was not able to explore the training scene efficiently. The green
curve is the user’s navigation path during the training. The user only
passed through the regions with fall hazards (in blue), while he missed all
regions with caught-in/between hazards (in yellow) and electrical hazards
(in green). This results in poor improvement in his skills as reflected by
his performance in the post-evaluation, where he shows improvement
in his fall hazard inspection skill but has no improvement in detecting all
other types of hazards.

from the PG-VR group improve significantly more than the FE-VR
group and slides group.

User Navigation. Statistical analysis results suggest that personalized
guidance VR training is more effective than free exploration VR train-
ing in improving the users’ hazard identification skill. According to
the observations, we believe that using the synthesized training route in
the personalized guidance VR training scenarios may have led to the
improvement, compared to having the users freely navigate in a free
exploration VR training. Figure 14 shows a user navigation example.
The green curve is the user’s navigation path during the free exploration
VR training. This users’ number of mistakes in the pre-evaluation and
post-evaluation are plotted as the last pair of columns in Figure 5 (b)
in the supplementary material. More specifically, in pre-evaluation,
the number of mistakes this user made for fall, caught-in/between, and
electrical hazards are 4 ,2 and 3 respectively. In post-evaluation, they
are 0, 3, and 3, respectively. As we can see, this user had corrected all
of the mistakes in identifying fall hazards while he had no improvement
at all in detecting other types of hazards. This is likely because this
user had only navigated to the areas of the scene where there were
fall hazards only (top-right under the blue shade), therefore he got no
chance to be trained on detecting other types of hazards. Rather, as
shown in Figure 8, personalized guidance VR training would address
all of the users’ weak points by guiding them towards the hazards they
were not quite familiar with. This setting may explain why some of the
users from the free exploration VR training group improved much less
than those from the personalized guidance VR training group. How-
ever, we believe that if the users from free exploration VR training
group were given plenty of time, they could have improved as much
as the users from personalized guidance VR training group. Note that,
as mentioned before, the users from the free exploration VR training
group has been given a 50% longer time than the personalized guidance
VR training group. On the other hand, compared to slides group, the
training time is generally the same as the PG-VR group. Which means,
users in PG-VR group are given sufficient amount of time in exploring
the scene. This suggests that the personalized guidance VR training is
more efficient than the free exploration VR training. We also note that
longer VR training time more likely result in dizziness and vertigo, so,
improving training efficiency of VR training is important.

Common Mistakes. We discuss some common mistakes made by the
users in the in both pre and post evaluations. As shown in Figure 15,
such common mistakes include (a) mistakening struck-by hazards as fall
hazards; (b) mistakening caught-in/between hazards as fall hazards; (c)

(a) Struck-by hazard as fall hazard. (b) Caught-in hazard as fall hazard.

(c) Missed caught-in hazard. (d) Missed electrical hazard.

Fig. 15. Examples of common mistakes. (a) struck-by hazard is mistaken
as fall hazard; (b) caught-in/between hazard is mistaken as fall hazard;
(c) missed caught-in/between hazard; and (d) missed electrical hazard.

missing electrical hazards; and (d) missing caught-in/between hazards.
Users sometimes make those common mistakes again even after the
training process. However, those users from the slides group and free
exploration VR group tend to make those mistakes again more often
than the personalized guidance VR group. Reasons for those mistakes
are concluded as follows:

• Struck-by hazards as fall hazards. Users misinterpreted the falling
objects as fall hazards. In fact, falling objects which could strike
people belong to struck-by hazards.

• Caught-in/between hazards as fall hazards. Users misinterpreted
that objects near a cave caused fall hazards. In fact, heavy objects
near the rim of a cave could cause the cave to collapse and bury
the people working inside the cave. This is called a cave-in hazard,
belongs to caught-in/between hazard.

• Missed caught-in/between hazards. Some users missed pointing
out the risk of being caught-in between two objects and potentially
being crushed from two sides.

• Missed electrical hazards. Some users failed to identify the risk
caused by electrical components such as temporary lights sus-
pended by electric cords. Exposing to damaged wires with high
voltage could result in electric shocks and death.

User Feedback. In order to learn from user’s feeling about our
designed virtual environment for evaluations and trainings, we asked
users to fill out questionnaires after the study and collected their general
feedbacks. The results are shown in Figure 16. Most of the users
agree with the following: our VR construction safety training and
evaluation programs are realistic and comfortable; the animation of VR
construction simulations looks natural; the control of VR navigation
feels natural; the training tasks in VR or slides are enjoyable. Most
of the users believe that through the training (either by VR or by
slides), their construction safety knowledge and skills have improved.
On the other hand, most of the users think that the post-evaluation is
easier than the pre-evaluation, even though they were based on the
same construction scenario. This is reasonable since users had learned
about the definitions and risks of different types of hazards through the
training sessions (either by slides or VR) such that when they faced
the same situations in the post-evaluation, they could apply their safety
knowledge to assess the situations more confidently.

7 SUMMARY

We have devised an optimization-based approach to synthesize per-
sonalized training scenarios for construction safety training in virtual
reality. We developed several virtual scenes for different construction
sites, generated the navigation meshes for the scenes, and incorporated
different types of common hazards such as struck-by, fall, caught-
in/between, and electrical into the scenes. By specifying some points



of interest as vertices, our approach generates a navigation path be-
tween every two vertices, resulting in a k-regular navigation graph with
k-shortest distance paths. As shown in Figure 8, by optimizing the
navigation route along with the sequence of hazards simultaneously
and automatically, our approach can synthesize personalized training
scenarios with emphasis on different types of hazards to efficiently
improve a trainee’s specific skills.

In order to measure the difference between our proposed personal-
ized VR training method and the other two training methods, including
slides training and free exploration VR training, we separated the users
into three groups. We applied ANOVA tests to analyze users’ improve-
ment in hazard inspection with different training methods. The results
show that users from the personalized guidance VR group improved
more significantly than users from the other groups. We collected the
users’ feedback on their training experiences via questionnaires. We
find that most users agree that our VR construction safety training and
evaluation programs are realistic, immersive, and enjoyable.

Limitations and Future Work. The main limitation of our work is
that the FE-VR condition confounds free exploration with the intended
non-personalized condition, in comparison to the PG-VR condition,
which employs guided exploration and the intended personalized condi-
tion. Therefore, future work should consider the fourth condition with
guided exploration but not personalized to better understand whether
the current significant differences between the FE-VR and PG-VR con-
ditions are primarily due to personalized features or guided exploration.

Besides, despite most users like our VR training and evaluation
programs, for example, according to users’ feedback, some users liked
the question settings and the construction sites where hazardous objects
are realistically placed, some users liked the feeling of being guided
by the auto-navigation. However, some users felt a little dizzy when
they tried speeding up. Some users thought that the VR training would
not be comfortable for older people. Please refer to the supplementary
material for more details of the users’ feedback.

We are also interested in the following future explorations that may
enhance users’ construction safety training experiences in virtual reality.
For example, we can provide more hazard inspection tasks or increases
the number of surrounding hazardous objects to avoid long tedious
navigation which may cause dizziness. We can also increase the scale
of construction sites and incorporate more diverse types of hazards
to make the virtual training more comprehensive. The VR training
program can also be extended to include VR manipulations such as
training users to remove the hazards properly and safely rather than
merely identifying potential hazards. We can also add narrations to
the VR training to teach users about the concepts and definitions of
different types of hazards. Overall, future work could focus on con-
tinuously improving the immersiveness and realism of virtual training
experiences, leverging advances in VR tracking, locomotion, haptic
feedback, and audio devices, etc.
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