
Make Uber Faster: Automatic Optimization of Uber
Schedule Using OpenStreetMap Data

Wanwan Li
Department of Computer Science

George Mason University
Fairfax, VA, US
wli17@gmu.edu

Fig. 1: Demo of our approach. (a) shows a user waiting for Uber (the white car is the 3D model we use). (b) shows an Uber
schedule optimized with our approach using OpenStreetMap data. Tasks are plotted with an origin as a circle and a destination
as a square. Tasks are colored the same as the Uber car to which they are assigned.

Abstract—Nowadays, ride-shares services such as Uber and
Lyft are becoming more and more popular among people as
shown in Figure 1 (a). Therefore, as a consequence, improving
Uber drivers’ scheduling policies becomes a hot research topic.
In this paper, we present Make Uber Faster: a stochastic opti-
mization approach to automatically improve the Uber scheduling
strategy (b). After considering the benefits from both sides: Uber
drivers and customers, we realize there is still a large among
of space to improve the scheduling strategy over the traditional
straightforward heuristic strategies such as the nearest customers
first strategy and the shortest jobs queues first strategy. By
taking advantage of the OpenStreetMap (OSM) dataset, we
conduct numerical experiments based on procedural computer
animations and simulations to compare different strategies with
ours both visually and statistically to demonstrate how our
strategy overperforms the others.

Index Terms—scheduling strategy, stochastic optimization,
computer animations, procedural simulations

I. INTRODUCTION

Given the advanced technologies of GPS location tracking
services provided on smart mobile devices, online platforms
are able to share customers’ location information with drivers
so that it is easier to find nearby drivers and makes it faster to
share a ride with the customers. This GPS technology helps

grow large-scale rideshare companies such as Uber and Lyft to
connect a large number of riders and drivers through cell phone
apps. An important question for the rideshare company to think
about is how to schedule the drivers efficiently to achieve the
goals that can satisfy both the drivers and the riders. This is
actually an interesting research topic about scheduling strategy.
However, there are some existing straightforward scheduling
strategies that are proposed given to some important heuristics
such as shorter jobs can start earlier than some longer jobs.
This can efficiently decide which job to be started first but
they are always somehow limited and losing some other
considerations when focusing on one consideration.

There are a lot of research works on exploring the best
scheduling strategies. For example, the job-shop scheduling
problem is a notoriously difficult problem in combinatorial
optimization and its computational study has been well ex-
plored by Applegate et al. [1] in 1991. Both conventional and
new solution techniques are discussed by Blazewicz et al. [2].
To solve this problems, both genetic algorithms [3]–[5] and
some other methods such as branch bounding algorithm [6],
multi-purpose machines [7], and tabu-search technique [8]
have been studied. Scheduling problems similar to the job-
shop scheduling problem such tasks scheduling for parallel and

(a) Default Roads. (b) Merged Roads. (c) Split Roads (Result).

Fig. 2: Navigation Graph Generation. (a) The default roads download with OpenStreetMap data. (b) Roads are merged. (c)
Roads are split and the navigation Graph G = (V,E) is generated. As we can see from subfigure (a), the downloaded roads
network extracted from the raw OpenStreetMap (OSM) data has less accurate navigation graph representations. According to
the splitting operation in (b) and merging operation in (c), the result navigation graph has a more accurate representation. As
shown in subfigure (c), the processed result of the navigation graph has the vertices specified as red spheres are representing
the roads’ intersections or crosses and has the edges specified as colored curves are representing the roads.

distributed computing systems [9], bicriterion scheduling [10],
surgical scheduling [11], sequencing scheduling [12], eco-
nomic lot scheduling [13], voltage scheduling [14], payment
scheduling [15], employee scheduling [16], and manufacturing
scheduling [17] etc. have also been proposed and solved by
researchers. Unfortunately, none of these solutions can be
directly copied to solve the Uber scheduling problem that we
are going to propose in this paper.

Not surprisingly, there are also plenty of research works
discussing about how to optimize the ride-sharing schedule.
For example, bee colony optimization approach was proposed
by Teodorovic et al. [18] to solve the ride-matching problem.
Agatz et al. [19] proposes a dynamic ride-sharing simulation
study in Metro Atlanta. At the mean while, queueing-theoretic
approach [20], hierarchical data-driven approach [21], stable
matching [22], ADA paratransit operation [23], particle swarm
optimization [24], Simulation-Based optimization [25] etc. are
also proposed for optimizing ride-sharing schedules. However,
as the most realistic simulation environment to compare dif-
ferent types of strategies, OpenStreetMap (OSM) data [26],
which is widely used in GPS-related applications, provides
such a possibility. But none of these works use the OSM data
to simulate and validate the optimization process as we do.

Therefore, like other multi-criteria scheduling problems, in
order to solve the Uber scheduling problems, we need to
consider at least two criteria: the drivers’ sides and the riders’
sides. For the drivers, we want to balance the workload to
make it fairer. That is, we need to avoid the case that several
drivers have too many tasks to deal with while some drivers
have no tasks at all. As for the rider side, we hope to minimize
the waiting time for each customer. That is, we hope to avoid
the case that the rider is kept waiting for one driver while some
other drivers have no tasks to do. There are some heuristics that
can help improve the Uber scheduling strategy, however, we
will demonstrate that such heuristics always lead to a locally
optimal solution. Contributions of our work include:

• We devise a navigation graph-based stochastic optimiza-
tion approach to automatically solve the Uber scheduling

problem that best satisfies the criteria from both drivers’
and riders’ sides using a simulated annealing algorithm.

• We simulate the optimized Uber schedules using Open-
StreetMap data to visually validate the efficacy of our
proposed optimization approach. Full demo video can be
watched at here https://youtu.be/KMbIEYlIoOE.

• We conduct a series of numerical experiments by com-
paring different scheduling strategies with ours through
numerical and statistical tests to validate our approach.

II. TECHNICAL APPROACH

In order to stimulate the Ubers’ route on a real-world map
and optimize the Uber schedules, first, we need to design
a data structure storing all necessary navigation information
on a map: we call it a navigation graph. After generating
the navigation graph, we need to numerically evaluate how
well a proposed schedule solution matches with optimization
goals, we call them cost functions. Then we need to devise an
efficient algorithm to minimize the cost functions by updating
the solutions repeatedly through several move strategies that
can explore the solution space sufficiently. In this section, we
discuss our methods to achieve each step listed above.

A. Problem Representations

Navigation Graph. A navigation graph is denoted as G =
(V,E) where vertices V = {vi|i = 1, 2, ..., |V |} represents
the road crossings and edges E = {(vi, vj) ∈ V 2|i, j ∈
[1, |V |] ∧ i ̸= j} are the roads. Navigation graph G = (V,E)
is the fundamental data structure upon which optimization is
applied. We design a pipeline to construct navigation graphs
automatically using real-world data. Through an open-source
Unity 3D asset, GO Map, which has been developed to support
multiple vector map APIs including Mapbox, OpenStreetMap,
Esri, and Mapzen, we can download accurate road networks
and geolocation data by calling these APIs. Therefore, given
these APIs, we can download the realistic urban street layout
from the OpenStreetMap (OSM) dataset directly.

However, those downloaded road data by default are seg-
mented irregularly and can not form a navigation graph
structure where the vertices should be the road crosses and
edges should be the roads. As shown in Figure 2, (a) shows
the default road network where there exist lots of mismatches
on the road crosses. Therefore, (b) shows the result that we
merge the roads wherever there are any two road segments
sharing the same ending points close to each other and are
contingent on each other with similar tangent directions. After
the merging process, we split the road segments according to
T-junctures as shown in (c). The condition to meet with a T-
juncture is if there is one ending point of a road segment is
lying on another road segment. After this splitting process, the
navigation graph G = (V,E) is constructed.

Workers, Tasks, and Schedule. In our problem statement,
we want to assign n rideshare tasks to m Uber drivers at
a particular moment. For simplicity, we set up the initial
locations of Uber drivers (workers W) at random vertices in
the navigation graph G = (V,E) as W = {wk|k ∈ [1,m]}
and wk ∈ V . Similarly, we assume all rideshare tasks are
starting at a random vertex on the navigation graph as the
origin and ending at another random vertex as the destination.
We represent the n tasks T = {tk|k ∈ [1, n]} as a list of
arbitrary vertex pairs vertex i and vertex j in navigation graph
G. Mathematically, tk ⊆ {(vi, vj)|i ̸= j ∧ (i, j) ∈ [1, |V |]2}.
We call an assignments of the tasks to the drivers as a
schedule. Then a schedule S is mathematically defined as a
list of combinations between workers W and tasks T such
that S = {(wi, tj)|i ∈ [1,m] ∧ j ∈ [1, n]}. Also, we want a
schedule to cover all of the tasks, that is

⋃
(wi,tj)∈S{tj} = T .

We store the schedule as a list of task queues so that we can
access any task by Si,j as the jth task of the ith worker. To
convert a task to a vertex on graph, we use So

i,j represent the
origin vertex of task Si,j and use Sd

i,j represent the destination
vertex of task Si,j . With this representation, |Si| denotes the
total number of tasks that are assigned to the ith worker.

All-Pairs Shortest Paths. In order to evaluate how much
time does it take for the Uber driver to finish a task, the
driving distance is a prior consideration. In our approach, we
assume the driving speed is approximately keeping a constant
value vdriver. Then given arbitrary tasks with an origin and a
destination, the time to finish the task is proportional to its
driving distance. For simplicity, we consider the drivers’ navi-
gation routes as the shortest paths between every two locations.
Let d(vi, vj) denote the minimal navigation distance between
vertex vi and vertex vj in navigation graph G, we calculate
d(vi, vj) using Floyd–Warshall algorithm [27] to solve the all-
pairs shortest paths problem. By definition, minimal distance
d(vi, vj) is solved through dynamic programming formula:
d(vi, vj) = min{d(vi, vj)k|k = 0, 1, ...|V |} and calculate
d(vi, vj)

k using recursive formula:

d(vi, vj)
k+1 = min

(
d(vi, vj)

k, d(vi, vk+1)
k + d(vk+1, vj)

k
)

(1)

where base case: d(vi, vj)0 = ||p(vi) − p(vj)||, if vertex vi

Fig. 3: All-pairs shortest paths generation. Red pin specifies
the source vertex as the center, all pairs of the shortest paths
that connect the source vertex with those vertices reachable
from the source vertex are sorted according to their minimum
distances. Minimum distances from arbitrary vertices to the
center are visualized through black spheres with varying sizes:
larger spheres represent the vertices nearer to the center and
smaller spheres represent the vertices further from the center.

and vertex vj are adjacent to each other on the navigation
graph G; d(vi, vj)0 = +∞, otherwise. And p(v) is a function
converts vertex v to a 3D position in world space.

An example of all-pairs shortest paths generation is shown
in Figure 3. In this demo, we set up a location near Bodrum
Beach in Bodrum, Turkey. We calculate the min navigation
distance from every vertex in the map to the center of this
map which is labeled by a red pin, the distance of each vertex
is plotted with a black sphere whose size decreases as its min
distance to the center increases. All vertices not labeled out are
those not reachable from the center vertex in this map. As we
can see, most of the vertices are reachable to the center vertex
and there is an obvious trend that vertices spatially closer to
the center vertex tends to have larger sizes of black spheres.

B. Cost Functions

Given the above problem representations, we want to optimize
the assignment of n rideshare tasks to m Uber drivers at a
particular moment by considering two parts: the driver side
and the rider side. We evaluate the schedule S through the
total cost function that consists of two cost terms including
(1) Driver cost function Cdriver(S) that evaluates how much is
the maximum time does the drivers take to finish all the tasks
and (2) Rider cost function Crider(S) that evaluates how much
is average waiting times for all riders. Mathematically, total
cost Ctotal(S) is defined as:

Ctotal(S) = wdriverCdriver(S) + wriderCrider(S), (2)

where wdriver and wrider are the blending weights for Cdriver(S)
and Crider(S) respectively.

(a) Initialization. (b) The 3000st iteration. (c) The 6000th iteration. (d) The 9000th iteration.

(e) The 12000st iteration. (f) The 15000st iteration. (g) The 18000th iteration. (h) The 20000th iteration (Result).

Fig. 4: Optimization Process. In this example, there are five Uber cars in total. Five Uber cars are rendered with five different
colors. At the same time, there are 20 tasks assigned to the five drivers. In the beginning, the Uber cars and the tasks are
initialized with random locations on the map. (a) The tasks are randomly assigned to five Ubers drivers during the initialization
step. Figure (b-h) shows the optimization process based on the number of iterations completed at that iteration. During the
optimizations, tasks’ are randomly selected and exchanged between Uber drivers. Figure (h) shows the optimization result of
the optimization schedule that the maximum finishing time of the driver and the riders’ average waiting time are minimized.
Subfigures in the bottom left corner plot the total cost function values. Subfigures in the bottom right corner have ten bars
with five different colors are corresponding to drivers’ five colors: they plot the maximum finishing time of that driver with
the same color (left bar) and the total waiting time of all riders assigned to that driver (right bar).

Driver Cost. In order to balance the amount of work assigned
to different Uber drivers, we hope to minimize the max time
that the last Uber driver has finished all the tasks. Therefore,
given an arbitrary schedule S, we want to penalize this
schedule by calculating the max working time it takes to finish
all the tasks in parallel by the drivers through the driver cost:

Cdriver(S) =
1

vdriver
max

i∈[1,m]

d(wi, S
o
i,1) +

|Si|∑
j=1

d(So
i,j , S

d
i,j)

+

|Si|∑
j=2

d(Sd
i,j−1, S

o
i,j)

(3)

As shown in Equation 3, the time to finish a task consists
of three parts: (1) Starting time: time to drive from the start
location of the driver towards the origin of the first task, (2)
Riding time: time to drive from the origin of a task towards the
destination of a task, and (3) Dropping-off time: time to drive
from the destination of the previous task towards the of origin
of the next task. Actually, driver cost Cdriver(S) calculates
exactly the longest time for a driver to finish all the assigned
tasks that consider these three parts of time consumption.

Rider Cost. As we know, most users want Uber to come as
soon as possible after they have placed their orders. Therefore,
another important consideration to improve the schedule of the

Uber system is the riders’ waiting time. To achieve so, we want
to penalize any given arbitrary schedule S by calculating the
rider’s average waiting time through the rider cost:

Crider(S) =
1

vdriver

m∑
i=1

|Si|∑
k=1

d(wi, S
o
i,1) +

k−1∑
j=1

d(So
i,j , S

d
i,j)

+

k∑
j=2

d(Sd
i,j−1, S

o
i,j)

/(
m

m∑
i=1

|Si|

)
(4)

As shown in Equation 4, there is an accumulative effect of
waiting time as the current rider’s waiting time includes the
previous rider’s waiting time. This can always happen when
there are more riders than drivers at a particular moment.
Just because of this effect, the average waiting time can
also be calculated recursively. For minimizing the average
waiting time of parallel tasks queues, there is a straightforward
heuristic strategy is to do the shortest job first (SJF), therefore,
we compare our approach with SJF in the experiment section.

C. Schedule Optimization

As shown in Figure 4, the process of optimizing a Uber
schedule on a navigation graph G = (V,E) with our proposed
approach is presented.In the beginning, the Uber cars and the
tasks are initialized with random locations on the map. The
tasks are randomly assigned to five Ubers drivers during the

5 Drivers and 20 Riders 10 Drivers and 40 Riders 15 Drivers and 60 Riders
R

an
do

m
N

ea
re

st
Sh

or
te

st
O

pt
im

iz
ed

Fig. 5: Testing our program with different parameter settings and comparing with different schedule strategies. Among these
results, three columns represent three different parameter settings, they are 5 Drivers and 20 Riders, 10 Drivers and 40
Riders, and 15 Drivers and 60 Riders respectively. Different rows are presenting different schedule strategies, they are Random
Assignment, Nearest Tasks First, Shortest Tasks Queue First, and Stochastic Optimization (Our approach) respectively.

initialization step. This forms the current schedule solution
S at the first iteration. For every new iteration, given to any
randomly sampled schedule solution S as the current status,
we propose a new schedule solution as S′ through three types
of move strategies:

• Reorder a Task. Randomly select a task i and task j from
a driver, exchange the order of these two tasks.

• Replace a Task.: Randomly select a task i from driver x
and a random task j from driver y, then assign task i to
driver y by inserting the task i before the task j.

• Exchange a Task.: Randomly select a task i from driver
x and task j from driver y, exchange these two tasks.

For a proposed update of schedule S′, in the formulation of
the simulated annealing approach proposed by Kirkpatrick et
al. [28], the acceptance probability function Pr(S′|S) is:

Pr(S′|S) = min(1,
f(S′)

f(S)
), (5)

where f(S) is a Boltzmann-like objective function related to
a Metropolis-Hastings state searching step [29]:

Fig. 6: Uber Schedule Simulation. This figure shows the animation of the Uber scheduling simulation process. In this scenario,
there are 5 Ubers drivers assigned with 20 ride-sharing tasks. Every Uber car is moving along the route on the map and
navigated by the schedule we have optimized. After the Uber driver finished each task, the route for that task will disappear
while only keeping the origins (circles) and destinations (squares). As we can see, almost all of the Ubers finish their tasks at
approximately the same time moment. This validates the effect that we minimize the max working time for all of the Ubers.

f(S) = exp(−1

t
Ctotal(S)), (6)

where t is the temperature parameter of simulated annealing,
which decreases gradually throughout the optimization. As the
temperature t decreases over iterations, the optimizer becomes
less aggressive and more greedy. By the end, the temperature
drops to a low value near zero, the optimizer tends to accept
better solutions only. We empirically use temperature t = 1.0
at the beginning of optimization and decrease by 0.2 every
1000 iterations until it reaches zero or terminated if the total
cost change is smaller than 3% over the past 500 iterations.

III. EXPERIMENTS

A. Implementations

We have implemented the Make Uber Faster system using a
computer graphics engine called Unity 3D with the 2019 ver-
sion. The simulated annealing algorithms and animations are
implemented in the C# programming language. The hardware

configurations include Intel Core i5 CPU, 32GB DDR4 RAM,
and NVIDIA GeForce GTX 1650 4GB GDDR6 Graphics
Card. All programs are running on CPU multi-threads except
the graphics rendering are rendered on GPUs.

B. Changing Parameter Settings
In this experiment, we have tested our approach through

different tasks settings and compared our optimization ap-
proach with different Uber scheduling strategies. As shown
in Figure 5, Uber scheduling solutions are presented. Among
these results, three columns represent three different parameter
settings on the number of drivers and number of riders, they
are 5 Drivers and 20 Riders, 10 Drivers and 40 Riders, and 15
Drivers and 60 Riders respectively. Different rows are present-
ing our approach compared with different existing heuristics-
based strategies, they are Random Assignment, Nearest Tasks
First, Shortest Tasks Queue First, and Stochastic Optimization
(Our approach) on four different rows respectively. Each
column is initialized with the same random tasks and drivers.

Max Working Time Avg Waiting Time
Colors 5 driver 20 rider 10 driver 40 rider 15 driver 60 rider

Random 47.27 43.38 57.38 11.58 12.55 13.44
Nearest 67.24 69.59 52.13 15.23 14.66 12.13
Shortest 32.48 30.46 31.96 9.82 8.21 9.13
Optimize 25.89 18.94 20.58 6.83 5.08 4.74

TABLE I: Statistical results. This table demonstrates the
statistical results including the max work time and average
wait time corresponding to the Uber schedules generated with
different parameter settings under different schedule strategies
as shown in Figure 5. Among these numbers, three colors
represent three different parameter settings, they are 5 Drivers
and 20 Riders, 10 Drivers and 40 Riders, and 15 Drivers
and 60 Riders respectively. Four rows are presenting four
different schedule strategies, they are Random Assignment,
Nearest Tasks First, Shortest Tasks Queue First, and Stochastic
Optimization (Our approach) respectively.

As for the Nearest Tasks First strategy, all tasks are assigned
to each Uber driver according to whose origins are closed to
that driver. Actually, this strategy is the most straightforward
method and probably the current Uber app seems to use this
strategy [30]. However, as shown in this figure, this strategy
seriously depends on whether the Uber drivers are evenly
distributed on the map. For example, from the figure, we
can infer that it works much better in the 5 Drivers and 20
Riders case than 10 Drivers and 40 Riders as the Ubers are
scattered more uniformly in the previous one. On average,
random strategy even performs better than this strategy.

As for the Shortest Tasks Queue First strategy, all tasks
are assigned to each Uber driver according to whose as-
signed tasks’ total amount of duration is the minimum one,
namely, with the shortest task queue. Actually, this strategy
approximates the optimal solution the best. As shown in this
figure, compared with other strategies such as the Random
Assignment and the Nearest Tasks First, this strategy always
results in a shorter task queue and averages the workloads
among the drivers much better. However, when it is compared
to the optimization strategy, this strategy is still less perfect.

The Stochastic Optimization strategy presented here is using
our proposed approach to optimize the Uber schedule within
20000 iterations. As the CPU computation rate is fast, the
whole optimization process only takes 25 to 50 secs to achieve
an acceptable optimal solution. During the optimization, we
initialize the first solution using the Random Assignment
strategy. As shown in the result, our approach overperforms all
other approaches. The rider’s max working time and rider’s av-
erage waiting time for changing parameters shown in Figure 5
are shown in TABLE 1 and the units are minutes. In order to
statistically prove our approach overperforms others, we have
repeated these experiments 20 times for each setting using
random initialization of task locations and Uber locations.
Statistical analysis will be presented in the next section.

C. Uber Schedule Simulation

In the end, we simulate the animation of the Ubers ac-
cording to the schedule that we have optimized. As shown

Fig. 7: Numerical experiments results. These box plots are
depicting the drivers’ max working time (first row) and rid-
ers’ average waiting time (second row) for each simulation
where the units are minutes. Three columns presents three
different parameter settings including 5 Drivers and 20 Riders,
10 Drivers and 40 Riders, and 15 Drivers and 60 Riders.
Four colors presents four different schedule strategies includ-
ing Random Assignment, Nearest Tasks First, Shortest Tasks
Queue First, and Stochastic Optimization (Our approach).

in Figure 6, there are 5 Ubers assigned with 20 tasks. Every
Uber is moving along the route on the map and navigated
by the schedule we optimized. After Uber finished each task,
the route for that task will disappear while only keeping the
origins and destinations. As we can see, almost all of the Ubers
finish their tasks at approximately the same time moment.
This validates the effect that we want to minimize the max
working time for all of the Ubers. To avoid that any Uber being
assigned too much work while others have finished already.

IV. RESULTS AND DISCUSSIONS

As shown in Figure 7, the simulation results of the numeri-
cal experiments are presented. By repeating these experiments
20 times for each task number setting, we randomly initialize
the task locations and Uber’s initial locations and compare
different settings and strategies like what we have shown
in Figure 5. The box plots are the max working time and
average waiting time for each simulation where the units are
minutes. As we can see, there is an obvious pattern that
generally Random Assignment performs better than the Nearest
Tasks First and Shortest Tasks Queue First strategy performs
better than the Random Assignment strategy. Therefore, if we
statically show that our approach performs significantly better
than the Shortest Tasks Queue First strategy, we can confirm
that our approach overperforms all. According to unpaired T-
tests with α = 0.05, we have lower bounds and uppers bounds
of the confidence interval for the max working time given
three settings are [3.2, 3.8], [8.4, 12.4], and [7.4, 11.0]; for
the average waiting time are [2.8, 4.2], [3.3, 4.4], and [3.2,
3.8]. Therefore, all confidence intervals do not cover 0. So,
ours performs much better than Shortest Tasks Queue First.

V. CONCLUSION

In this paper, we present Make Uber Faster: a stochastic
optimization approach to automatically improve the Uber
scheduling strategy. By taking advantage of the Open-
StreetMap (OSM) dataset, we construct navigation graphs
automatically using real-world data. Then we generate all-
pairs shortest paths on OSM to simulate Ubers’ navigation
routes. We optimize the assignment of the rideshare tasks to
Uber drivers by minimizing two costs: the Driver Cost which
is used for balancing the amount of work assigned to different
Uber drivers and the Rider Cost which is used for minimizing
the riders’ average waiting time. We simulate the optimized
Uber schedules using OpenStreetMap data to visually validate
the efficacy of our proposed optimization approach. At the
same time, we conduct a series of numerical experiments by
comparing different scheduling strategies including Random
Assignment strategy, Nearest Tasks First strategy, and the
Shortest Tasks Queue First strategy with our Stochastic Op-
timization strategy. According to the statistical analysis using
unpaired T-tests, we have %95 confidence to claim that our
strategy significantly overperforms other strategies.

Limitations and Future Works. However, according to the
explanation of our algorithm, there are lots of assumptions
made for simplifying the problem statements such as the speed
is considered to be always constant so that the task duration is
proportional to the distance and the assumption that all tasks
assigned at the same time are reaming unchanged. However,
in reality, it is important to consider some other external
conditions, such as extreme weather conditions, extreme traffic
conditions, and human-factors-related conditions, etc. As fu-
ture work, more dynamic conditions will be included into our
simulation and optimization platform. Interactions between the
user and the platform will be allowed for interactive simulation
and optimization. At the same time, personalized simulation
conditions can also be considered during the optimization
process such as personalized drivers and riders settings. We
believe our optimization approach can be easily extended with
such considerations and give acceptable results. Our work will
attract more researchers to explore how to use our approach
to optimize rideshare scheduling problems within a realistic
virtual simulation environment.

REFERENCES

[1] D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA Journal on computing, vol. 3, no. 2, pp.
149–156, 1991.

[2] J. Błażewicz, W. Domschke, and E. Pesch, “The job shop scheduling
problem: Conventional and new solution techniques,” European journal
of operational research, vol. 93, no. 1, pp. 1–33, 1996.

[3] L. Davis et al., “Job shop scheduling with genetic algorithms,” in
Proceedings of an international conference on genetic algorithms and
their applications, vol. 140, 1985.

[4] J. F. Gonçalves, J. J. de Magalhães Mendes, and M. G. Resende, “A
hybrid genetic algorithm for the job shop scheduling problem,” European
journal of operational research, vol. 167, no. 1, pp. 77–95, 2005.

[5] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for
the flexible job-shop scheduling problem,” Computers & operations
research, vol. 35, no. 10, pp. 3202–3212, 2008.

[6] P. Brucker, B. Jurisch, and B. Sievers, “A branch and bound algorithm
for the job-shop scheduling problem,” Discrete applied mathematics,
vol. 49, no. 1-3, pp. 107–127, 1994.

[7] P. Brucker and R. Schlie, “Job-shop scheduling with multi-purpose
machines,” Computing, vol. 45, no. 4, pp. 369–375, 1990.

[8] M. Dell’Amico and M. Trubian, “Applying tabu search to the job-shop
scheduling problem,” Annals of Operations research, vol. 41, no. 3, pp.
231–252, 1993.

[9] F. A. Omara and M. M. Arafa, “Genetic algorithms for task scheduling
problem,” in Foundations of Computational Intelligence Volume 3.
Springer, 2009, pp. 479–507.

[10] L. N. Van Wassenhove and L. F. Gelders, “Solving a bicriterion
scheduling problem,” European Journal of Operational Research, vol. 4,
no. 1, pp. 42–48, 1980.

[11] J. H. May, W. E. Spangler, D. P. Strum, and L. G. Vargas, “The
surgical scheduling problem: Current research and future opportunities,”
Production and Operations Management, vol. 20, no. 3, pp. 392–405,
2011.

[12] S. Panwalkar, R. Dudek, and M. Smith, “Sequencing research and
the industrial scheduling problem,” in Symposium on the Theory of
Scheduling and its Applications. Springer, 1973, pp. 29–38.

[13] S. E. Elmaghraby, “The economic lot scheduling problem (elsp): review
and extensions,” Management Science, vol. 24, no. 6, pp. 587–598, 1978.

[14] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dy-
namically variable voltage processors,” in Proceedings of the 1998
international symposium on Low power electronics and design, 1998,
pp. 197–202.

[15] R. C. Grinold, “The payment scheduling problem,” Naval Research
Logistics Quarterly, vol. 19, no. 1, pp. 123–136, 1972.

[16] F. Glover and C. McMillan, “The general employee scheduling problem.
an integration of ms and ai,” Computers & operations research, vol. 13,
no. 5, pp. 563–573, 1986.

[17] H. V. D. Parunak, “Characterizing the manufacturing scheduling prob-
lem,” Journal of manufacturing systems, vol. 10, no. 3, pp. 241–259,
1991.

[18] D. Teodorović and M. Dell’Orco, “Mitigating traffic congestion: solving
the ride-matching problem by bee colony optimization,” Transportation
Planning and Technology, vol. 31, no. 2, pp. 135–152, 2008.

[19] N. Agatz, A. L. Erera, M. W. Savelsbergh, and X. Wang, “Dynamic
ride-sharing: A simulation study in metro atlanta,” Procedia-Social and
Behavioral Sciences, vol. 17, pp. 532–550, 2011.

[20] S. Banerjee, C. Riquelme, and R. Johari, “Pricing in ride-share plat-
forms: A queueing-theoretic approach,” Available at SSRN 2568258,
2015.

[21] X. Chen, F. Miao, G. J. Pappas, and V. Preciado, “Hierarchical data-
driven vehicle dispatch and ride-sharing,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC). IEEE, 2017, pp. 4458–
4463.

[22] X. Wang, N. Agatz, and A. Erera, “Stable matching for dynamic ride-
sharing systems,” Transportation Science, vol. 52, no. 4, pp. 850–867,
2018.

[23] E. J. Gonzales, C. Sipetas, J. Italiano et al., “Optimizing ada para-
transit operation with taxis and ride share programs,” University of
Massachusetts at Amherst, Tech. Rep., 2019.

[24] S. Silwal, V. Raychoudhury, S. Saha, and M. O. Gani, “A dynamic taxi
ride sharing system using particle swarm optimization,” in 2020 IEEE
17th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS). IEEE, 2020, pp. 112–120.

[25] N. A. Dehkordi, “Simulation-based optimization frameworks for dy-
namic ride-sharing,” Ph.D. dissertation, Université de Lyon, 2020.

[26] P. Mooney, M. Minghini et al., “A review of openstreetmap data,” 2017.
[27] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the

ACM, vol. 5, no. 6, p. 345, 1962.
[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.
[29] S. Chib and E. Greenberg, “Understanding the metropolis-hastings

algorithm,” The american statistician, vol. 49, no. 4, pp. 327–335, 1995.
[30] Uber, “How to schedule a ride — uber,” https://www.youtube.com/

watch?v=aVGw-QkY20c, Jan 2017.

