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Abstract—Recently, as many deep learning models are emerg-
ing, deep learning has achieved great success in the field of
artificial intelligence(AI). Especially, the Generative adversarial
networks (GANs) based on zero-sum game theory has become
a new research hot spot in the field of deep learning. The
significance of the GAN model is that it can generate realistic
data through unsupervised learning. Based on the conceptual
and theoretical framework of the generative adversarial network,
GANs models and their application result in tremendous success
among different areas, especially in image synthesis and editing.
This paper visualizes the data structures of various kinds of
GANs models in 3D and discusses the variational GAN models
with respect to their improvements in the applications. As the
GANs have superior learning ability, strong plasticity, great
potential for improvement, and a wide application range, this
paper prospects the possible applications of the GANs in the
near future.

Index Terms—Image Synthesis, Image Editing, Neural Net-
works, Deep Learning, Generative Adversarial Networks

I. INTRODUCTION

Generative adversarial networks (GANs) have become a hot
research direction in the field of artificial intelligence(AI). The
basic idea of GANs is derived from the two-person zero-
sum game in game theory. It consists of two different neural
networks: a generator and a discriminator. Typically, it is
trained by means of adversarial unsupervised learning. The
purpose of GAN is to estimate the potential distribution of data
samples and generate new data samples. In the fields of image
processing and visual computing, speech and natural language
processing, information security, chess games, etc, GANs have
been widely studied and got tremendous success in different
areas. This paper firstly introduces what is GAN, illustrate its
structure with 3D visualizations, and discusses the advantages
and disadvantages of the original GAN model. Subsequently,
this paper introduces some derivative models of GANs, their
new features, and their improvements compared with the
original model. Finally, this paper summarizes the application
fields of GANs, the performance of existing models, some
representative works of GAN in image synthesis and editing
area, and prospect the possible applications and extensions of
GANs in the near future.

A. Introduction to Generative Adversarial Networks(GANs)

Generative adversarial networks (GAN) is a generative
model originally proposed by [1]. GAN is one kind of

Fig. 1. The structure of original GAN.

structured learning, it is inspired by the two-person zero-sum
game in game theory (i.e. the sum of two-person interests
is zero, and the gain of one side is the loss of the other
side). Generally, the GAN system consists of a generator
and a discriminator(See Figure 1 ). The generator captures
the potential distribution of real data samples and generates
new data samples, namely, fake data. The discriminator is a
classifier to distinguish whether the input data is real or fake.

As shown in Figure 1, the task for generator G is to train
a neural network that is able to convert arbitrary randomly
distributed noise, typically called as a latent vector Z, into
a synthesized fake data G(Z), and try to make the fake
data approach real data x, that is, the training data, as much
as possible. At the same time, the discriminator is trained
simultaneously as a classifier. Ideally, the data generated by
the generator is classified as fake data while the data from
the training set as the real data. Therefore, the discriminator
is being trained to decide whether the data is real or fake.

In the beginning, the generator generates fake data ran-
domly, therefore, it is easy for the discriminator to identify the
fake data. While the generator is optimizing and improving,
more and more fake data looks like real data, until the
discriminator can’t tell which one is real and which one is fake.
That means, in the end, the generator can generate realistic
data being able to ”fool” the discriminator. Therefore, the
optimization is done through a min-max loss function, that
the ”worse” performance of the discriminator results in the
”best” performance of the generator. The loss function for
discriminator LD(D,G) is defined as:

min
G

max
D

LD(D,G) = logD(x) + log(1−D(G(z)) (1)

where data x is from the real data distribution while latent
vector z is from the random distribution (noise). The discrim-



inator D wants to maximize the classification between the
distribution from real data x ∼ data and the one from the
fake data x ∼ G(z). After the optimizations, we hope that
D(x) increases which means the discriminator can identify
real data more accurately. That is why we maximize D. At
the same time, the discriminator hopes D(G(z)) decreases, as
it wants to identify the fake data more accurately. Therefore,
we minimize G. On the other side, as a generator G, we hope
that D(G(z)) increases which means the fake data G(Z) looks
like real data after the optimizations. Therefore, the goal of
the generator is to maximize the loss function for generator
LG(D,G):

max
G

LG(D,G) = log(D(G(z)) (2)

where similarly, z is a latent vector from a random distribution
(noise).

Generator and discriminator can be implemented through
deep neural networks which are proved to be robust enough
to achieve the goals through a series of experiments. As the
trained model is able to generate fake data that conform
to the sample distribution of real data without any prior
knowledge, therefore, generative models take an important
role in unsupervised deep learning to capture the high-order
correlation of data without target class label information. By
learning the semantic features of the real data, the GAN model
can estimate the distribution of training data and generate new
data similar to training data.

B. Advantages and Disadvantages of Original GAN

Before the appearance of the original GAN model, there are
some existing unsupervised learning-based generative models
proved to be efficient for image synthesis. For example,
Autoencoder (AE) proposed by [2] is able to convert an input
image into a code layer through a neural network (Encoder)
and convert such code layer through another neural network
(Decoder) back to an image as similar as possible to the
original input. During the training process, both encoder and
decoder are trained simultaneous and the difference between
the input images and the decoded images are backpropagated
to the optimizer as the loss function to be minimized. AE and
its variational version called Variational Auto-Encoder(VAE)
[3] have been successfully applied to image reconstruction
and content-based image retrieval [4]. AE overcomes the tra-
ditional bottleneck of pixel-based image retrieval approaches
by directly comparing the code generated from the encoder
instead of comparing the images pixel-by-pixel. Through
this approach, AE is able to catch the semantic features of
the retrieved images while pixel-by-pixel-based approaches
cannot. Another application of AE is image denoising [5].
Before sending the original high-quality input image to the
AE, the input image is preprocessed by adding white noises.
Then train the AE to generate images as close to the original
high-quality input images as possible. Through such a training
process, AE is able to reconstruct high-quality images from
low-quality noised images input. As another representative
generative model, PixeIRNN [6] trains the neural network by

estimating the conditional distribution of each individual pixel
in a given adjacent pixel (left or upper). In the PixeIRNN
model, the input of the current pixel and its adjacent previous
pixel are both sent into the recurrent neural network as a
sequence, the previous pixel is the condition of the current
pixel input. Through such a mechanism, the PixeIRNN is able
to predict another part of an image from one part of the image.
Therefore, PixeIRNN is proved to be a powerful tool to deal
with image completion problems.

Although the existing generative models (such as AE, VAE,
etc.) are able to generate new images by itself, the output
images are seriously restricted to the training dataset as they
are trying to mimic the input image from the training set.
Therefore, the synthesized data are very similar to the original
input from the existing dataset, and sometimes, such models
even directly retrieve images from the dataset. On the other
side, PixeIRNN is trying to complete the images without
considering the global image semantics and trying to combine
different images from different catalogs as new images that
are semantically meaningless. For example, a car image is
completed with a cat face. Therefore, a more intelligent
generate model needs to have two advantages: 1) the generated
images are semantically meaningful and can be identified as
realistic images. 2) the generated images are not retrieved from
the dataset and not too similar to the given training samples.
With such two advantages, the original GAN model made
itself a breakthrough in the state-of-art of machine learning.
On one hand, as the GAN has a discriminator to identify
the image as real or fake, therefore, if well-trained, GAN is
theoretically able to synthesize realistic images, this explains
the first advantage. On the other hand, as the generator in
the GAN has no input directly from the dataset, therefore,
the generator doesn’t know how does the realistic data look
like and there is no chance for the generator to generate new
realistic images by copying the existing images, this explains
the second advantage.

However, the original GAN model, inspired by the Nash
equilibrium in game theory, still has some inevitable disadvan-
tages. For example, there is no explicit function to evaluate
how good the current status of the GAN is. Typically, loss
functions can be used to evaluate whether the current neural
network is well-trained. If the loss function is close to zero,
then the neural network looks ”good” enough. But in the
original GAN model, the generator hopes to maximize the
discriminator’s loss function, which means it hopes to fail the
discriminator by ”fooling” it ”smartly”. But on the other hand,
the discriminator wants to be good at punishing the generator
by minimizing its own loss function while maximizing the
generator’s loss function. Only in that way, the discriminator
can be trained to identify the fake data well. Therefore, as
a consequence, the optimization will not be guaranteed to
converge as their loss functions are adversarial. Also, it is
not guaranteed whether the discriminator or the generator
is over-trained and it is very hard to be balanced. In the
end, there will be either harmonious consistency between
discriminator and generator or there is one side over-performed



than another side. For example, when the generator is trying
to ”fool” the discriminator in some ”tricky” ways such as
only generate some specific images that can be identified
as real images. In that case, the discriminator is not well-
trained and the generator will not be able to generate realistic
images diversely. For solving such instability, oscillations and
divergences issues that potentially exist during the training
process of the original GAN model, some variations of the
GAN models change the original JS-divergence [7] into other
types of divergence such as the f-divergence in the f-GAN
[8] or change the distance measure function into Wasserstein
distance in the WGAN [9].

II. VARIATIONS OF GENERATIVE ADVERSARIAL
NETWORKS

The Generative Adversarial Networks (GANs) was pro-
posed in 2014 and has achieved great influence on the
machine learning community. However, the original GAN
model is unpractical for most of the challenging real-world
tasks. Therefore, different variations of GANs models were
proposed. For example, Conditional Generative Adversarial
Networks (CGAN) [10], Deep Convolutional Generative Ad-
versarial Networks (DCGAN) [11], Information Maximization
Generative Adversarial Networks (InfoGAN) [12], Wasserstein
Distance-based Generative Adversarial Network (WGAN) [9],
etc. Most of these GAN models are milestones that push the
original GAN model a great step forward as a powerful tool to
solve the real-world problem. In this section, some milestones
of the variations of the GAN models will be introduced.

A. DCGAN

DCGAN, short for deep convolutional GAN, firstly pro-
posed by [11], is a milestone in the development of improved
GANs model. It combines CNN in supervised learning and the
GAN in unsupervised learning, which is robust and convenient
for engineering implementation (See Figure 2 ). In order to
enhance the original GAN model, the DCGAN model removes
the fully connected hidden layers to construct a deeper neural
network. For image analysis, replacing the pooling layer
with stride convolutions networks in discriminator and with
fractional-stride convolutions in the generator results in a more
suitable sampling kernel function for unsupervised learning as
such deep neural networks are able to identify the matterns in
images and capture the features more efficiently. Because of
the improved training stability of the DCGAN model, it has
been widely accepted and used for academic purposes.

Fig. 2. The structure of DCGAN.

B. CGAN

Inspired by the conditional probability, feeding the GANs
with additional conditions results in a novel variation of the
GAN, namely, Conditional GAN (CGAN), which is proposed
by [10]. In order to solve the problem of how to generate a
model given specific requirements, this improved method feeds
such conditions (such as labels) into both of the discriminator
and the generator networks (See Figure 3). During the training,
the generator takes both the label and the latent noise vector
z as the input, and pass the label to the discriminator. For
discriminator, either the generator generates a poor-quality
image or it generates an image not matching with its input
label, it will be detected as fake data. In such a way, the
discriminator is able to improve both the quality of the
generated image and the correlations between the generated
image and its label through the feedback for the generator.

Fig. 3. The structure of CGAN.

C. InfoGAN

As proposed by [12], InfoGAN is the GAN extended with
information maximizing theory. The output of the original
GAN model is G(z), where z is a totally unstructured random
vector. During the training, there are no additional restrictions
on z, therfore, output G(z) is highly entangled with input
z, and make the individual elements in vector z loss their
correspondence to the specific semantic features of the data.
InfoGAN has made improvements by splitting the original
input of the generator model into two parts: (1) the random
noise z, and (2) a random latent code c which is used to
targeting the semantic features of the data distribution [13].
(See Figure 4 ).

According to the hypothesis from [12], there should be
high mutual information between latent codes c and generator
distribution G(z, c), therefore, in order to maximize the mutual
information between the c and G(z, c), it incorporates an
assistant classifier Q(c,G(z)) to classify the latent code c
from the synthesized fake data G(z). Therefore, only if c has
connections to the salient features of data so that it can be
classified correctly by the classifier Q. The discriminator has
a boolean output true or false for identifying the real data from
fake data, while the output latent code c′ are classified through
the classifier Q, which is used to be compared with the input
latent code c fed into the generator G. If the classified output
latent code c is closer to the original input latent code c, it will
result in a higher score for the generator G as the generator
is able to extract the semantic information from latent code
better. As a great milestone, InfoGAN extends the original



GAN model with the ability to synthesize more controllable
data representation by tuning the values in c [14], it has taken
another step forward in the development of GANs.

Fig. 4. The structure of InfoGAN.

D. EBGAN

According to the original GAN model, in the beginning, the
performance of the discriminator is poor and it is improved
step by step as more and more real data and fake data are
fed in. Therefore, the generator improved extremely slowly in
the case that the discriminator is not well trained. However,
EBGAN (Energy-based GAN) first proposed by [13] which
extends the GANs with an auto-encoder/decoder which is
pre-trained (See Figure 5 ). As the auto-encoder is pre-
trained through the real data by minimizing the energy which
measures the difference between the decoded images and the
input images. Therefore, when the fake images are fed into
the autoencoder, they will not be decoded correctly until the
generated fake images look real.

By minimizing the energy value, extracted from the well-
trained discriminator, which is smaller in the region near the
real data domain but higher in the non-real data domain [14],
the generator will be improved much faster at the beginning
than the original GAN model. Therefore, EBGANs give the
original GAN model an explanation of the energy model and
generalize the loss function in a novel way so that EBGANs
take a further step along with this research direction.

Fig. 5. The structure of EBGANs

III. APPLICATION OF GANS

As a powerful tool to generate realistic data, GANs are
widely used in different areas. The most general application
of GANs is to synthesize a fake image that looks like a real
one and editing the existing image into a synthesized image
without distortion. According to the strengths from diverse
variations of GANs, GANs has been widely used among
different areas to solve real-world tasks and problems. In this
section, some of the recent representative works of GANs are
selected and introduced.

A. Image Synthesis

Image synthesis is the most general application of the varia-
tions of GAN models. There are several famous image datasets
serving as benchmarks for evaluating the efficiency of a GAN
model. For example, the MNIST database of handwritten digits
proposed by [15], CelebA dataset of a large-scale celebrity
faces attributes proposed by [16], and Fashion-MNIST pro-
posed by [17]. Different variational GAN models demonstrate

(a) MNIST (b) GAN (c) DCGAN

Fig. 6. Performance of DCGAN: (a) samples from the MNIST dataset,
generations from the original GAN, and generations from the DCGAN. Image
is cited from [11].

the improvements in their performances on the benchmark
database. [11] devised DCGAN to generate different ranges of
images including bedroom and face images, and prove that the
synthesized images are not retrieved from the existing image
database. Its performance compared with the ground truth of
MNIST and the original GAN are shown in Figure 6. Beyond
this baseline, CGAN is moving a step forward which is able
to generate the samples with specific conditions as shown in
Figure 7. As shown in Figure 8, InfoGAN is able to extract
the semantic information from the sample images and find
the relations between the latent code c and such semantics.
This provides with users a more controllable interface to
generate the desired images. Based on the performance of
DCGAN, EBGAN makes further improvements in generating
high-quality images. As shown in the LSUN bedroom dataset
(See Figure 9), the left images are generated with the DCGAN,
the right images are generated with the DCGAN, some noise
can still be found in the DCGAN, but in EBGAN, the noises
are less obvious.

Fig. 7. Generated MNIST digits with CGAN, rows (from top to bottom)
represents conditioned labels from ”2”, ”3”, ”4”, ”5”, to ”6”. Image is cited
from [10].

(a) Digit type(c1) (b) Rotation(c2) (c) Width(c3)

Fig. 8. InfoGAN’s latent code c has image semantics: In (a), varying c1
corresponds to different digit types; in (b), a small value of c2 denotes left-
leaning digit whereas a high value corresponds to right-leaning digit; in (c),
c3 smoothly controls the width of the strokes. Image is cited from [12].

B. Image Editing

As GAN models and technologies are getting mature, the
extensions of the GANs are increasing rapidly, especially
in the area of image editing. As traditional ways to edit



the image, the popular image processing software, such as
Photoshop developed by Abode company, is widely used
among multimedia artists and designers. However, even the
software is getting more powerful and provides more easy-
to-use functions, there still need lots of manual efforts from
the designers. Therefore, GANs’ impressive synthesis ability
attracts more and more researchers to develop image auto-
editing tools through deep neural networks. Typically, image
editing is divided into two types: local editing and global
editing. The most famous application of deep learning on
global editing is the image style transfer technique [18]. Most
of the existing global editing algorithms are built on image-
to-image translation networks and result in surprising results
[19]. However, unsupervised image-to-image translation and
image local editing remain challenging before the appearance
of the GANs models. As local image editing techniques
require more conditions than the global image editing (such
as whether the stitching is natural, whether the edited part is
consistent with the full image content, etc.), this challenges
of the local image editing techniques provide a perfect stage
for the GANs to demonstrate their specialty. As the GANs

(a) DCGAN (b) EBGAN

Fig. 9. This figure compares the generator performance between DCGAN (a)
and EBGAN (b) Image is cited from [13].

model can repair and complete the missing area of the image
according to its surrounding area from the semantic level, it
provides more natural and acceptable results than the nearest
neighbor stitching method. Typically, GANs work through the
Context Encoder (CE) [20], which are widely used for high-
resolution image patching under specific circumstances. CE
includes two parts: Encoder and Decoder, which typically
incorporate DCGAN applied with ADAM optimizer to achieve
image auto-completing with highly satisfying quality. For
example, [21] successfully change the status of the people’s
eyes in an elegant manner using the Exemplar GAN, a
variation of CGAN. As shown in Figure 10, Exemplar GAN
can achieve photo-realistic, high-quality, and personalized in-
painting function to edit the image in an astonishing way.
As another impressive work for image completion with high
consistency between local image and global image, high
image resolution, and extremely photo-realistic image content,
[22] successfully achieved the real-time and interactive auto-
completing of local image editing skills using GAN model
(See Figure 11). At the same time, the face editing skills also
improve. As shown in the Figure, [19] it successfully devised a
conditional DCGAN-based approach to automatically edit the
human face and hair image in a time-saving manner simply by
sketching on the face image with simple curves. This is a great
invention as it opens the eyes for people towards photo editing
through sketching, the most convenient, and straightforward
way to edit the images. Also, there are many other types of

applications of the GANs that are not listed here, which will
be briefly discussed in the discussion sections.

Fig. 10. Eye editing using Exemplar GAN. Image is cited from [21].

Fig. 11. Auto-image completion using GAN. Image is cited from [22].

Fig. 12. Sketch-based interface for face image auto-editing using CDCGAN.
Image is cited from [19].

IV. DISCUSSIONS AND CONCLUSION

Besides image synthesis and editing, GANs has more var-
ious kinds of applications among different research areas,
for example, GANs have deep influences on image enhance-
ment, super-resolution. The same kind of image, such as
face image enhancement from low-resolution face image to
high-resolution image, can be better implemented by GANS.
The idea is to use a low-resolution image as a constraint
condition to generate the realistic high-resolution images [11].
As another example, the super-resolution energy adversarial
network (SRGAN) [23], without depending on refined data
sets, it can enhance and denoise various types of images.
The features of SRGAN includes: (1) completing the missing
part of images with the constraint on the global context of
the generated image to ensure the smoothness of the result;
(2) SRGAN feed the generated data and real data into the
VGG-19 network respectively, define the loss items according
to the difference of the feature map and adds normalization
to the output [14]. Finally, after combining these loss items
including mismatching loss, image smoothing loss, and feature
map difference loss, the super-resolution image is generated
by feeding into the GANs framework through minimizing the
loss functions.

Besides, the GANs have been extended into the sketch
restoration and colorization techniques. Sketch restoration
refers to the technique that can convert the drawing of sketches
into realistic color images. Its special case is portrait restora-
tion. A DCGAN can complete the restoration of draft drawings
[24]. it gives the training methods of two kinds of image
databases with corresponding relations, finds the relationship
between database images, and gives a general solution of
sketch-to-image conversions, such as the conversion of the
street scenes, the sketch of buildings, the terrain elevation from
a contour map. Traditional image coloring methods do not use
massive data, and image coloring can not be applied to all



types of pictures. [13] use Patch GAN network to complete
the picture coloring work, and make full use of massive data
to achieve better results. This proves that GAN plays an active
role in sketching techniques.

In conclusion, generative adversarial network(GANs) has
become one of the most important and influencing methods in
deep learning. It has the advantages of fully fitting data, faster
synthesis speed, and realistic data generation. The academic
research of the GANs model is progressing rapidly. The
original GANs model is trained by MinMax optimization.
The conditional generative adversarial network(CGAN) adds
preconditions to input data in order to provide the controlla-
bility of the output. DCGAN, a deep convolution generation
adversarial network, proposes a stable training network struc-
ture to prevent training collapse. InfoGAN controls semantic
change through latent code and extracts the relations between
the latent code and its corresponding semantic feature of the
training data. EBGAN explains the adversarial network from
the perspective of the energy model. WGAN defines a more
smooth distance measure for the loss function and gives a
better mathematical definition of the distance between real
data distribution and fake data distribution, which theoretically
solves the problem of training collapse and instability. As a
powerful, robust, and reliable tool, the GANs model has been
widely used in image synthesis, image editing image repair,
image denoising, sketch restoration, sketch colorization, and
other image processing area. At present, however, there is no
quantitative standard for evaluating the realism of synthetic
images, that is, it is hard to quantitatively measure how realis-
tic an image is. It can be only judged subjectively whether the
synthesized images look natural and realistic. This remains an
open topic for the GANs community. In the near future, GANs
will be applied to more general applications not only within
the image processing domain. For example, music synthesis
using GANs to generate different styles of music composed by
different composers or even create innovative music styles in a
”masterpiece” level like famous musicians such as Beethoven
and Mozart. The GANs can also be extended to write articles
and poems with different styles and cultural backgrounds.
When the GANs are getting more mature, even the GANs
can take over human jobs such as movie directors who are
directing new movies including story design and character
artistic design, choreography artists who are designing new
dance for a group of dancers and so forth. In one last word,
GAN is going to change human lives from different aspects
in the near future.
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